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Abstract
This paper integrates techniques in natural language processing and computer vision to improve
recognition and description of entities and activities in real-world videos. We propose a strategy
for generating textual descriptions of videos by using a factor graph to combine visual detections
with language statistics. We use state-of-the-art visual recognition systems to obtain confidences
on entities, activities, and scenes present in the video. Our factor graph model combines these
detection confidences with probabilistic knowledge mined from text corpora to estimate the most
likely subject, verb, object, and place. Results on YouTube videos show that our approach im-
proves both the joint detection of these latent, diverse sentence components and the detection of
some individual components when compared to using the vision system alone, as well as over
a previous n-gram language-modeling approach. The joint detection allows us to automatically
generate more accurate, richer sentential descriptions of videos with a wide array of possible
content.

1 Introduction

Integrating language and vision is a topic that is attracting increasing attention in computational lin-
guistics (Berg and Hockenmaier, 2013). Although there is a fair bit of research on generating natural-
language descriptions of images (Feng and Lapata, 2013; Yang et al., 2011; Li et al., 2011; Ordonez et
al., 2011), there is significantly less work on describing videos (Barbu et al., 2012; Guadarrama et al.,
2013; Das et al., 2013; Rohrbach et al., 2013; Senina et al., 2014). In particular, much of the research
on videos utilizes artificially constructed videos with prescribed sets of objects and actions (Barbu et al.,
2012; Yu and Siskind, 2013). Generating natural-language descriptions of videos in the wild, such as
those posted on YouTube, is a very challenging task.

In this paper, we focus on selecting content for generating sentences to describe videos. Due to the
large numbers of video actions and objects and scarcity of training data, we introduce a graphical model
for integrating statistical linguistic knowledge mined from large text corpora with noisy computer vi-
sion detections. This integration allows us to infer which vision detections to trust given prior linguistic
knowledge. Using a large, realistic collection of YouTube videos, we demonstrate that this model effec-
tively exploits linguistic knowledge to improve visual interpretation, producing more accurate descrip-
tions compared to relying solely on visual information. For example, consider the frames of the video
in Figure 1. Instead of generating the inaccurate description “A person is playing on the keyboard in the
kitchen” using purely visual information, our system generates the more correct “A person is playing the
piano in the house” by using statistics mined from parsed corpora to improve the interpretation of the
uncertain visual detections, such as the presence of both a computer keyboard and a piano in the video.

2 Background and Related Work

Several recent projects have integrated linguistic and visual information to aid description of images and
videos. The most related work on image description is Baby Talk (Kulkarni et al., 2011), which uses
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Figure 1: Frames which depict a person playing a piano in front of a keyboard from one of the videos
in our dataset. Purely visual information is more confident in the computer keyboard’s presence than the
piano’s, while our model can correctly determine that the person is more likely to be playing the piano
than the computer keyboard.

a Conditional Random Field (CRF) to integrate visual detections with statistical linguistic knowledge
mined from parsed image descriptions and Google queries, and the work of Yang et al. (2011) which
uses corpus statistics to aid the description of objects and scenes. We go beyond the scope of these
previous works by also selecting verbs through the integration of activity recognition from video and
statistics from parsed corpora.

With regard to video description, the work of Barbu et al. (2012) uses a small, hand-coded grammar to
describe a sparse set of prescribed activities. In contrast, we utilize corpus statistics to aid the description
of a wide range of naturally-occurring videos. The most similar work is (Krishnamoorthy et al., 2013;
Guadarrama et al., 2013) which uses an n-gram language model to help determine the best subject-verb-
object for describing a video. Krishnamoorthy et al. (2013) used a limited set of videos containing
a small set of 20 entities, and the work of Guadarrama et al. (2013) showed an advantage of using
linguistic knowledge only for the case of “zero shot activity recognition,” in which the appropriate verb
for describing the activity was never seen during training. Compared to this prior work, we explore a
much larger set of entities and activities (see Section 3.2) and add scene recognition (see Section 3.3) to
further enrich the descriptions. Our experiments demonstrate that our graphical model produces a more
accurate subject-verb-object-place description than these simpler n-gram language modeling approaches.

Our Contributions:

• We present a new method, a Factor Graph Model (FGM), to perform content selection by integrating
visual and linguistic information to select the best subject-verb-object-place description of a video.

• Our model includes scene (location) information which has not been addressed by previous video
description works (Barbu et al., 2012; Krishnamoorthy et al., 2013; Guadarrama et al., 2013).

• We demonstrate the scalability of our model by evaluating it on a large dataset of naturally occurring
videos (1297 training, 670 testing), recognizing sentential subjects out of 45 candidate entities,
objects out of 218 candidate objects, verbs out of 218 candidate activities, and places out of 12
candidate scenes.

3 Approach

Our overall approach uses a probabilistic graphical model to integrate the visual detection of entities,
activities, and scenes with language statistics to determine the best subject, verb, object, and place to
describe a given video. A descriptive English sentence is generated from the selected sentential compo-
nents.

3.1 Video Dataset
We use the video dataset collected by Chen and Dolan (2011). The dataset contains 1,967 short YouTube
video clips paired with multiple human-generated natural-language descriptions. The video clips are 10
to 25 seconds in duration and typically consist of a single activity. Portions of this dataset have been
used in previous work on video description (Motwani and Mooney, 2012; Krishnamoorthy et al., 2013;
Guadarrama et al., 2013). We use 1,297 randomly selected videos for training and evaluate predictions
on the remaining 670 test videos.
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3.2 Visual Recognition of Subject, Verb, and Object

We utilize the visual recognition techniques employed by Guadarrama et al. (2013) to process the videos
and produce probabilistic detections of grammatical subjects, verbs, and objects. In our data-set there are
45 candidate entities for the grammatical subject (such as animal, baby, cat, chef, and person) and 241
for the grammatical object (such as flute, motorbike, shrimp, person, and tv). There are 218 candidate
activities for the grammatical verb, including climb, cut, play, ride, and walk.

Entity Related Features From each video two frames per second are extracted and passed to pre-
trained visual object classifiers and detectors. As in Guadarrama et al. (2013), we compute represen-
tations based on detected objects using ObjectBank (Li et al., 2010) and the 20 PASCAL (Everingham
et al., 2010) object classes for each frame. We use the PASCAL scores and ObjectBank scores with
max pooling over the set of frames as the entity descriptors for the video clip. Additionally, to be able
to recognize more objects, we use the LLC-10k proposed by Deng et al. (2012) which was trained on
ImageNet 2011 object dataset with 10k categories. LLC-10K uses a bank of linear SVM classifiers over
pooled local vector-quantized features learned from the 7K bottom level synsets of the 10K ImageNet
database. We aggregate the 10K classifier scores obtained for each frame by doing max pooling across
frames.

Activity Related Features We use the activity recognizers described in Guadarrama et al. (2013) to
produce probabilistic verb detections. They extract Dense Trajectories developed by Wang et al. (2011)
and compute HoG (Histogram of Gradients), HoF (Histograms of Optical Flow) and MBH (Motion
Boundary Histogram) features over space time volumes around the trajectories. We used the default
parameters proposed in Wang et al. (2011) (N = 32, nσ = 2, nr = 3) and adopted a standard bag-
of-features representation. We construct a codebook for each descriptor (Trajectory, HoG, HoF, MBH)
separately. For each descriptor we randomly sampled 100K points and clustered them using K-means
into a codebook of 4000 words. Descriptors are assigned to their closest vocabulary word using Eu-
clidean distance. Each video is then represented as a histogram over these clusters.

Multi-channel SVM To allow object and activity features inform one another, we combine all the
features extracted using a multi-channel approach inspired by Zhang et al. (2007) to build three non-linear
SVM (Chang and Lin, 2011) classifiers for the subject, verb, and object, as described in Guadarrama et
al. (2013). Note that we do not employ the hierarchical semantic model of Guadarrama et al. (2013) to
augment our object or activity recognition. In addition, each SVM learns a Platt scaling (Platt, 1999) to
predict the label and a visual confidence value, C(t) ∈ [0, 1], for each entity or activity t. The output
of the SVMs constitute the visual confidences on subject, verb, and object in all the models described
henceforth.

3.3 Visual Scene Recognition

In addition to the techniques employed by Guadarrama et al. (2013) used to obtain probabilistic de-
tections of grammatical subjects, verbs, and objects, we developed a novel scene detector based on
state-of-the-art computer vision methods.

We examined the description of all the 1,967 videos in the YouTube dataset and extracted scene words
from the dependency parses as described in Section 3.4. With the help of WordNet1 we grouped the list
of scene words and their synonyms into distinct scene classes. Based on the frequency of mentions and
the coverage of scenes in the dataset, we shortlisted a set of 12 final scenes (mountain, pool, beach, road,
kitchen, field, snow, forest, house, stage, track, and sky).

For the detection itself, we follow Xiao et al. (2010) and select several state-of-the-art features that are
potentially useful for scene recognition. We extract GIST, HOG2x2, SSIM (self-similarity) and Dense
SIFT descriptors. We also extract LBP (Local Binary Patterns), Sparse SIFT Histograms, Line features,
Color Histograms, Texton Histograms, Tiny Images, Geometric Probability Map and Geometric specific
histograms. The code for extracting the features and computing kernels for the features is taken from

1http://wordnet.princeton.edu
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the original papers as described in Xiao et al. (2010). Using the features and kernels, we train one-vs-all
SVMs (Chang and Lin, 2011) to classify images into scene categories. As in Xiao et al. (2010), this gave
us 51 different SVM classifiers with different feature and kernel choices. We use the images from the
UIUC 15 scene dataset (Lazebnik et al., 2006) and the SUN 397 scene dataset (Xiao et al., 2010) for
training the scene classifiers for all scenes except kitchen. The training images for kitchen were obtained
by selecting 100 frames from about 15 training videos, since the classifier trained on images from the
existing scene datasets performed extremely poorly on the videos. We use all the classifiers to detect
scenes for each frame. We then average the scene detection scores over all the classifiers across all the
frames of the video. This gives us visual confidence values, C(t), over all scene categories t for the
video.

3.4 Language Statistics

A key aspect of our approach is the use of language statistics mined from English text corpora to
bias visual interpretation. Like Krishnamoorthy et al. (2013), we use dependency-parsed text from
four large “out of domain” corpora: English Gigaword, British National Corpus (BNC), ukWac and
WaCkypedia EN. We also use a small, specialized “in domain” corpus: dependency parsed sentences
from the human-generated, English descriptions for the YouTube training videos mentioned in Sec-
tion 3.1. We extract SVOP (subject, verb, object, place) tuples from the dependency parses. The subject-
verb relationships are identified using nsubj dependencies, the verb-object relationships using dobj and
prep dependencies. Object-place relationships are identified using the prep dependency, checking that
the noun modified by the preposition is one of our recognizable places (or synonyms of the recognizable
scenes as indicated by WordNet). We then extract co-occuring SV, VO, and OP bigram statistics from
the resulting SVOP tuples to inform our factor-graph model, which uses both the out-of-domain (po) and
in-domain (pi) bigram probabilities.

3.5 Content Selection Using Factor Graphs

In order to combine visual and linguistic evidence, we use the probabilistic factor-graph model shown
in Figure 2. This model integrates the uncertain visual detections described in Sections 3.2 and 3.3 with
the language statistics described in Section 3.4 to predict the best words for describing the subject (S),
verb (V), object (O), and place (P) for each test video. After instantiating the potential functions for
this model, we perform a maximum a posteriori (MAP) estimation (via the max-product algorithm) to
determine the most probable joint set of values for these latent variables.

Figure 2: The factor graph model used for content selection (right), and sample frames from a video to
be described (left). Visual confidence values are observed (gray potentials) and inform sentence com-
ponents. Language potentials (dashed) connect latent words between sentence components. Samples of
the vision confidence values used as observations for the verb and object are shown for the example test
video.
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Observation Potentials. The observations in our model take the form of confidence scores from the
visual detectors described in Sections 3.2 and 3.3. That is, the potential for each sentence component
k ∈ {S, V,O, P}, φk(t) = Ck(t) is the detection confidence that the classifier for component k (Ck)
gives to the word t.

Language Potentials. Language statistics were gathered as described in Section 3.4 and used to deter-
mine the language potentials as follows:

φk,l(t, s) := p(l = s|k = t) := αpo(l = s|k = t) + (1− α)pi(l = s|k = t)

Where k and l are two contiguous components in the SVOP sequence and t and s are words that are
possible values for these two components, respectively. We would expect

φV,O(ride,motorbike) := p(O=motorbike|V=ride)

to be relatively high, since motorbike is a likely object of the verb ride. The potential between two
sequential components k and l in the SVOP sequence is computed by linearly interpolating the bigram
probability observed in the out-of-domain corpus of general text (po) and the in-domain corpus of video
descriptions (pi). The interpolation parameter α adjusts the importance of these two corpora in deter-
mining the bigram probability. We optimized performance by fixing α = 0.25 when cross-validating on
the training data. This weighting effectively allows general text corpora to be used to smooth the prob-
ability estimates for video descriptions. We note that meaningful information would likely be captured
by non-contiguous language potentials such as φV,P , but that the resulting factor graphs would contain
cycles, preventing us from performing exact inference tractably.

3.6 Sentence Generation
Finally, we use the SVOP tuple chosen by our model to generate an English sentence using the following
template: “Determiner (A,The) - Subject - Verb (Present, Present Continuous) - Preposition (optional)
- Determiner (A,The) - Object (optional) - Preposition - Determiner (A,The) - Place (optional)” The
most probable prepositions are identified using preposition-object and preposition-place bigram statistics
mined from the dependency parsed corpora described in Section 3.4. Given an SVOP tuple, our objective
is to generate a rich sentence using the subject, verb, object, and place information. However, it is not
prudent to add the object and place to the description of all videos since some verbs may be intransitive
and the place information may be redundant. In order to achieve the best set of components to include,
we use the above template to first generate a set of candidate sentences based on the SVO triple, SVP
triple and the SVOP quadruple. Then, each sentence type (SVO, SVP, and SVOP) is ranked using the
BerkeleyLM language model (Pauls and Klein, 2011) trained on the GoogleNgram corpus. Finally, we
output the sentence with the highest average 5-gram probability in order to normalize for sentence length.

4 Experimental Results

We compared using the vision system alone to our model, which augments that system with linguistic
knowledge. Specifically, we consider the Highest Vision Confidence (HVC) model, which takes for
each sentence component the word with the highest confidence from the state-of-the-art vision detectors
described in Sections 3.2 and 3.3. We compare the results of this model on the 670 test videos to those
of our Factor Graph Model (FGM), as discussed in Section 3.5.

4.1 N-gram Baseline
Additionally, we compare both models against the existing, baseline n-gram model of Krishnamoorthy
et al. (2013) by extending their best n-gram model to support places. To be specific, we build a quadra-
gram model, similar to the trigram model of Krishnamoorthy et al. (2013). We first extract SVOP tuples
from the dependency parses as described in Section 3.4. We then train a backoff language model with
Kneyser-Ney smoothing (Chen and Goodman, 1996) for estimating the likelihood of the SVOP quadru-
ple. On quadruples that are not seen during training, this quadragram language model backs off to SVO
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Most S% V% O% [P]% SVO% SVO[P]%
n-gram 76.57 11.04 11.19 18.30 2.39 1.86
HVC 76.57 +22.24 11.94 17.24 +4.33 +2.92
FGM 76.42 +21.34 12.39 19.89 +5.67 +3.71
Any

n-gram 86.87 19.25 21.94 21.75 5.67 2.65
HVC 86.57 +38.66 22.09 21.22 +10.15 +4.24
FGM 86.27 +37.16 +24.63 24.67 +10.45 +6.10

Table 1: Average binary accuracy of predicting the most common word (top) and of predicting any given
word (bottom). Bold entries are statistically significantly (p < 0.05) greater than the HVC model, while
+ entries are significantly greater than the n-gram model. No model scored significantly higher than
FGM on any metric. [P] indicates that the score ranges only over the subset of videos for which any
annotator provided a place.

triple and subject-verb, verb-object, object-place bigrams to estimate the probability of the quadruple.
As in the case of the factor graph model, we consider the effect of learning from a domain specific text
corpus. We build quadragram language models for both out-of-domain and in-domain text-corpora de-
scribed in Section 3.4. The probability of a quadragram in the language model is computed by linearly
interpolating the probabilities from the in-domain and out-of-domain corpus. We experiment with dif-
ferent number of top subjects, objects, verbs, and places to estimate the most likely SVOP quadruple
from the quadragram language model. We report the results for the best performing n-gram model that
considers the top 5 subjects, 5 objects, 10 verbs, and 3 places based on the vision confidences and an out-
of-domain corpus weight of 1. This model also incorporates verb expansion as described in the original
work (Krishnamoorthy et al., 2013).

4.2 Content Evaluation

Table 1 shows the accuracy of the models when their prediction for each sentence component is consid-
ered correct only if it is the word most commonly used by human annotators to describe the video, as well
as the accuracy of the models when the prediction is considered correct if used by any of the annotators to
describe the video. We evaluate the accuracy of each component (S,V,O,P) individually, and for complete
SVO and SVOP tuples, where all components must be correct in order for a complete tuple to be judged
correct. Because only about half (56.3%) of test videos were described with a place by some annotator,
accuracies involving places (“[P]”) are averaged only over the subset of videos for which any annotator
provided a place. Significance was determined using a paired t-test which compared the distributions of
the binary correctness of each model’s prediction on each video for the specified component(s).

We also use the WUP metric from Wordnet::Similarity2 to measure the quality of the predicted words
to account for semantically similar words. For example, where the binary metric would mark “slice” as
an incorrect substitute for “cut”, the WUP metric will provide “partial credit” for such predictions. The
results using WUP similarity metrics for the most common word and any valid word (maximum WUP
similarity is chosen from among valid words) are presented in Table 2. Since WUP provides scores are in
the range [0,1], we view the scores as “percent relevance,” and we obtain tuple scores for each sentence
by taking the product of the component WUP scores.

5 Discussion

It is clear from the results in Table 1 that both the HVC and the FGM outperform the n-gram language
model approach used in the most-similar previous work (Krishnamoorthy et al., 2013; Guadarrama et
al., 2013). Note that while Krishnamoorthy et al. (2013) showed an improvement with an n-gram model
considering only the top few vision detections, the FGM considers vision confidences over the entire set

2http://wn-similarity.sourceforge.net/
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Most S% V% O% [P]% SVO% SVO[P]%
n-gram 89.00 41.56 44.01 57.62 17.53 10.83
HVC 89.09 +∗48.85 43.99 56.00 +20.82 +12.95
FGM 89.01 +47.05 +45.29 +59.64 +21.54 +14.50
Any

n-gram 96.60 55.08 65.52 61.98 35.70 22.84
HVC 96.54 +∗65.61 65.32 60.67 +42.53 +27.75
FGM 96.32 +63.49 +67.52 +64.68 +42.43 +29.34

Table 2: Average WUP score of the predicted word against the most common word (top) and the max-
imum score against any given word (bottom). Bold entries are statistically significantly (p < 0.05)
greater than the HVC model; + entries are significantly greater than the n-gram model; ∗ entries are
significantly greater than the FGM. [P] indicates that the score ranges only over the subset of videos for
which any annotator provided a place.

of grammatical objects. Additionally, our models are evaluated on a much more diverse set of videos
while Krishnamoorthy et al. (2013) evaluate the n-gram model on 185 videos (a small subset of the
1,967 videos containing the 20 grammatical objects that their system recognized).

The performance differences between the vision system (HVC) and our integrated model (FGM) are
modest but significant in important places. Specifically, the FGM makes improvements to SVO (Table 1,
top) and SVOP (Table 2, top) tuple accuracies. FGM also significantly improves both the O and [P] (Ta-
ble 1, bottom, and Table 2) component accuracies, suggesting that it can help clean up some noise from
the vision systems even at the component level by considering related bigram probabilities. FGM causes
no significant losses under the binary metric, but performs worse than the HVC model on predicting a
verb component semantically similar to the correct verb under the WUP metric (Table 2). This loss on
the verb component is worth the gains in tuple accuracy, since tuple prediction is the more difficult and
most central part of the content selection task. Additionally, experiments by the authors of Guadarrama
et al. (2013) on Amazon Mechanical Turk have shown that humans tend to heavily penalize tuples and
descriptions even if they have most of the components correct.

Table 3 shows frames from some test videos and the sentence components chosen by the models to
describe them. In the top four videos we see the FGM improving raw vision results. For example, it
determines that a person is more likely slicing an onion than an egg. Some specific confidence values
for the HVC can be seen for this video in Figure 2. In the bottom two videos of Table 3 we see the HVC
performing better without linguistic information. For example, the FGM intuits that a person is more
likely to be driving a car than lifting it, and steers the prediction away from the correct verb. This may
be part of a larger phenomenon in which YouTube videos often depict unusual actions, and consequently
general language knowledge can sometimes hurt performance by selecting more common activities.

6 Future Work

Compared to the human gold standard descriptions, there appears to be room for improvement in de-
tecting activities, objects, and scenes with high precision. Visual recognition of entities and activities in
diverse real-world videos is extremely challenging, partially due to lack of training data. As a result our
current model is faced with large amounts of noise in the vision potentials, especially for objects. Going
forward, we believe that improving visual recognition will allow the language statistics to be even more
useful. We are currently exploring deep image feature representations (Donahue et al., 2013) to improve
object and verb recognition, as well as model transfer from large labeled object ontologies (Deng et al.,
2009).

From the generation perspective, there is scope to move beyond the template based sentence gener-
ation. This becomes particularly relevant if we detect multiple grammatical objects such as adjectives
or adverbs. We need to decide whether additional grammatical objects would enrich the sentence de-
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FGM improves over HVC
“A person is slicing the onion in the kitchen”

Gold: person, slice, onion, (none)
HVC: person, slice, egg, kitchen
FGM: person, slice, onion, kitchen

“A person is running a race on the road”
Gold: person, run, race, (none)
HVC: person, ride, race, ground
FGM: person, run, race, road

“A person is playing the guitar on the stage”
Gold: person, play, guitar, tree
HVC: person, play, water, kitchen
FGM: person, play, guitar, stage

“A person is playing a guitar in the house”
Gold: person, play, guitar, (none)
HVC: person, pour, chili, kitchen
FGM: person, play, guitar, house

HVC better alone
“A person is lifting a car on the road”

Gold: person, lift, car, ground
HVC: person, lift, car, road
FGM: person, drive, car, road

“A person is pouring the egg in the kitchen”
Gold: person, pour, mushroom, kitchen
HVC: person, pour, egg, kitchen
FGM: person, play, egg, kitchen

Table 3: Example videos and: (Gold) the most common SVOP provided by annotators; (HVC) the
highest vision confidence selections; (FGM) the selections from our factor graph model. The top section
shows videos where the FGM improved over HVC; the bottom shows videos where the HVC did better
alone. For each video, the sentence generated from the components chosen from the more successful
system is shown.

scription and identify when to add them appropriately. With increasing applications for such systems in
automatic video surveillance and video retrieval, generating richer and more diverse sentences for longer
videos is an area for future research. In comparison to previous approaches (Krishnamoorthy et al., 2013;
Yang et al., 2011) the factor graph model can be easily extended to support this. Additional nodes can be
attached suitably to the graph to enable the prediction of adjectives and adverbs to enrich the base SVOP
tuple.

7 Conclusions

This work introduces a new framework to generate simple descriptions of short videos by integrating
visual detection confidences with language statistics obtained from large textual corpora. Experimental
results show that our approach achieves modest improvements over a pure vision system and signifi-
cantly improves over previous methods in predicting the complete subject-verb-object and subject-verb-
object-place tuples. Our work has a broad coverage of objects and verbs and extends previous works by
predicting place information.

1225



There are instances where our model fails to predict the correct verb when compared to the HVC
model. This could partially be because the SVM classifiers that detect activity already leverage entity
information during training, and adding external language does not appear to improve verb prediction
significantly. Further detracting from performance, our model occasionally propagates, rather than cor-
recting, errors from the HVC. For example, when the HVC predicts the correct verb and incorrect object,
such as in “person ride car” when the video truly depicts a person riding a motorbike, our model selects
the more likely verb pairing “person drive car”, extending the error from the object to the verb as well.

Despite these drawbacks, our approach predicts complete subject-verb-object-place tuples more
closely related to the most commonly used human descriptions than vision alone (Table 2), and in general
improves both object and place recognition accuracies (Tables 1, 2).
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