
Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing, pages 843–852,
MIT, Massachusetts, USA, 9-11 October 2010. c©2010 Association for Computational Linguistics

A Fast Decoder for Joint Word Segmentation and POS-Tagging Using a
Single Discriminative Model

Yue Zhang and Stephen Clark
University of Cambridge Computer Laboratory

William Gates Building,
15 JJ Thomson Avenue,

Cambridge CB3 0FD, UK
{yue.zhang, stephen.clark}@cl.cam.ac.uk

Abstract

We show that the standard beam-search al-
gorithm can be used as an efficient decoder
for the global linear model of Zhang and
Clark (2008) for joint word segmentation and
POS-tagging, achieving a significant speed im-
provement. Such decoding is enabled by:
(1) separating full word features from par-
tial word features so that feature templates
can be instantiated incrementally, according to
whether the current character is separated or
appended; (2) deciding thePOS-tag of a poten-
tial word when its first character is processed.
Early-update is used with perceptron training
so that the linear model gives a high score to a
correct partial candidate as well as a full out-
put. Effective scoring of partial structures al-
lows the decoder to give high accuracy with a
small beam-size of 16. In our 10-fold cross-
validation experiments with the Chinese Tree-
bank, our system performed over 10 times as
fast as Zhang and Clark (2008) with little ac-
curacy loss. The accuracy of our system on
the standardCTB 5 test was competitive with
the best in the literature.

1 Introduction and Motivation

Several approaches have been proposed to solve
word segmentation andPOS-tagging jointly, includ-
ing the reranking approach (Shi and Wang, 2007;
Jiang et al., 2008b), the hybrid approach (Nakagawa
and Uchimoto, 2007; Jiang et al., 2008a), and the
single-model approach (Ng and Low, 2004; Zhang
and Clark, 2008; Kruengkrai et al., 2009). These
methods led to accuracy improvements over the tra-
ditional, pipelined segmentation andPOS-tagging

baseline by avoiding segmentation error propagation
and making use of part-of-speech information to im-
prove segmentation.

The single-model approach to joint segmentation
andPOS-tagging offers consistent training of all in-
formation, concerning words, characters and parts-
of-speech. However, exact inference with dynamic
programming can be infeasible if features are de-
fined over a large enough range of the output, such
as over a two-word history. In our previous work
(Zhang and Clark, 2008), which we refer to as
Z&C08 from now on, we used an approximate de-
coding algorithm that keeps track of a set of partially
built structures for each character, which can be seen
as a dynamic programming chart which is greatly re-
duced by pruning.

In this paper we follow the line of single-model
research, in particular the global linear model of
Z&C08. We show that effective decoding can be
achieved with standard beam-search, which gives
significant speed improvements compared to the de-
coding algorithm of Z&C08, and achieves accura-
cies that are competitive with the state-of-the-art.
Our research is also in line with recent research on
improving the speed ofNLP systems with little or
no accuracy loss (Charniak et al., 2006; Roark and
Hollingshead, 2008).

Our speed improvement is achieved by the use
of a single-beam decoder. Given an input sentence,
candidate outputs are built incrementally, one char-
acter at a time. When each character is processed,
it is combined with existing candidates in all possi-
ble ways to generate new candidates, and an agenda
is used to keep theN -best candidate outputs from

843

the begining of the sentence to the current character.
Compared to the multiple-beam search algorithm of
Z&C08, the use of a single beam can lead to an order
of magnitude faster decoding speed.

1.1 The processing of partial words

An important problem that we solve in this paper
is the handling of partial words with a single beam
decoder for the global model. As we pointed out
in Z&C08, it is very difficult to score partial words
properly when they are compared with full words,
although such comparison is necessary for incre-
mental decoding with a single-beam. To allow com-
parisons with full words, partial words can either be
treated as full words, or handled differently.

We showed in Z&C08 that a naive single-beam
decoder which treats partial words in the same way
as full words failed to give a competitive accu-
racy. An important reason for the low accuracy is
over-segmentation during beam-search. Consider
the three characters “自来水 (tap water)”. The first
two characters do not make sense when put together
as a single word. Rather, when treated as two single-
character words, they can make sense in a sentence
such as “请 (please)自 (self)来 (come)取 (take)”.
Therefore, when using single-beam search to pro-
cess “自来水 (tap water)”, the two-character word
candidate “自来” is likely to have been thrown off
the agenda before the third character “水” is con-
sidered, leading to an unrecoverable segmentation
error.

This problem is even more severe for a joint seg-
mentor andPOS-tagger than for a pure word seg-
mentor, since thePOS-tags andPOS-tag bigram of
“自” and “来” further supports them being separated
when ”来” is considered. The multiple-beam search
decoder we proposed in Z&C08 can be seen as a
means to ensure that the three characters “自来水”
always have a chance to be considered as a single
word. It explores candidate segmentations from the
beginning of the sentence until each character, and
avoids the problem of processing partial words by
considering only full words. However, since it ex-
plores a larger part of the search space than a single-
beam decoder, its time complexity is correspond-
ingly higher.

In this paper, we treat partial words differently
from full words, so that in the previous example,

the decoder can take the first two characters in “自

来水 (tap water)” as a partial word, and keep it
in the beam before the third character is processed.
One challenge is the representation ofPOS-tags for
partial words. ThePOS of a partial word is unde-
fined without the corresponding full word informa-
tion. Though a partial word can make sense with
a particularPOS-tag when it is treated as a com-
plete word, thisPOS-tag is not necessarily thePOSof
the full word which contains the partial word. Take
the three-character sequence “下雨天” as an exam-
ple. The first character “下” represents a single-
character word “below”, for which thePOS can be
LC or VV . The first two characters “下雨” repre-
sent a two-character word “rain”, for which thePOS

can beVV . Moreover, all three characters when put
together make the word “rainy day”, for which the
POS is NN. As discussed above, assigningPOS tags
to partial words as if they were full words leads to
low accuracy.

An obvious solution to the above problem is not to
assign aPOSto a partial word until it becomes a full
word. However, lack ofPOS information for partial
words makes them less competitive compared to full
words in the beam, since the scores of full words are
futher supported byPOS and POS ngram informa-
tion. Therefore, not assigningPOS to partial words
potentially leads to over segmentation. In our exper-
iments, this method did not give comparable accura-
cies to our Z&C08 system.

In this paper, we take a different approach, and
assign aPOS-tag to a partial word when its first char-
acter is separated from the final character of the pre-
vious word. When more characters are appended to
a partial word, thePOS is not changed. The idea is
to use thePOSof a partial word as the predictedPOS

of the full word it will become. Possible predictions
are made with the first character of the word, and the
likely ones will be kept in the beam for the next pro-
cessing steps. For example, with the three characters
“下雨天”, we try to keep two partial words (besides
full words) in the beam when the first word “下” is
processed, with thePOSbeingVV andNN, respec-
tively. The firstPOSpredicts the two-character word
“下雨”，and the second the three-character word
“下雨天”. Now when the second character is pro-
cessed, we still need to maintain the possiblePOS

NN in the agenda, which predicts the three-character

844

word “下雨天”.
As a main contribution of this paper, we show that

the mechanism of predicting thePOSat the first char-
acter gives competitive accuracy. This mechanism
can be justified theoretically. Unlike alphabetical
languages, each Chinese character represents some
specific meanings. Given a character, it is natural for
a human speaker to know immediately what types
of words it can start. The allows the knowledge of
possiblePOS-tags of words that a character can start,
using information about the character from the train-
ing data. Moreover, thePOSof the previous words to
the current word are also useful in deciding possible
POSfor the word.1

The mechanism of first-character decision ofPOS

also boosts the efficiency, since the enumeration of
POS is unecessary when a character is appended to
the end of an existing word. As a result, the com-
plexity of each processing step is reduce by half
compared to a method withoutPOSprediction.

Finally, an intuitive way to represent the status of
a partial word is using a flag explicitly, which means
an early decision of the segmentation of the next in-
coming character. We take a simpler alternative ap-
proach, and treat every word as a partial word un-
til the next incoming character is separated from the
last character of this word. Before a word is con-
firmed as a full word, we only apply to it features
that represent its current partial status, such as char-
acter bigrams, its starting character and its part-of-
speech, etc. Full word features, including the first
and last characters of a word, are applied immedi-
ately after a word is confirmed as complete.

An important component for our proposed system
is the training process, which needs to ensure that
the model scores a partial word with predictedPOS

properly. We use the averaged perceptron (Collins,
2002) for training, together with the “early update”
mechanism of Collins and Roark (2004). Rather
than updating the parameters after decoding is com-
plete, the modified algorithm updates parameters at
any processing step if the correct partial candidate
falls out of the beam.

In our experiments using the Chinese Treebank

1The next incoming characters are also a useful source
of information for predicting thePOS. However, our system
achieved competitive accuracy with Z&C08 without such char-
acter lookahead features.

data, our system ran an order of magnitude faster
than our Z&C08 system with little loss of accuracy.
The accuracy of our system was competitive with
other recent models.

2 Model and Feature Templates

We use a linear model to score both partial and full
candidate outputs. Given an inputx, the score of a
candidate outputy is computed as:

Score(y) = Φ(y) · ~w,

whereΦ(y) is the global feature vector extracted
from y, and~w is the parameter vector of the model.

Figure 1 shows the feature templates for the
model, where templates 1 – 14 contain only seg-
mentation information and templates 15 – 29 contain
both segmentation andPOS information. Each tem-
plate is instantiated according to the current charac-
ter in the decoding process. Row “For” shows the
conditions for template instantiation, where “s” in-
dicates that the corresponding template is instanti-
ated when the current character starts a new word,
and “a” indicates that the corresponding template is
instantiated when the current character does not start
a new word. In the row for feature templates,w, t
and c are used to represent a word, aPOS-tag and
a character, respectively. The subscripts are based
on the current character, wherew

−1 represents the
first word to the left of the current character, and
p
−2 represents thePOS-tag on the second word to

the left of the current character, and so on. As an
example, feature template 1 is instantiated when the
current character starts a new word, and the resulting
feature value is the word to the left of this charac-
ter. start(w), end(w) andlen(w) represent the first
character, the last character and the length of word
w, respectively. The length of a word is normalized
to 16 if it is larger than 16.cat(c) represents thePOS

category of characterc, which is the set ofPOS-tags
seen on characterc, as we used in Z&C08.

Given a partial or complete candidatey, its global
feature vectorΦ(y) is computed by instantiating all
applicable feature templates from Table 1 for each
character iny, according to whether or not the char-
acter is separated from the previous character.

The feature templates are mostly taken from, or
inspired by, the feature templates of Z&C08. Tem-
plates 1, 2, 3, 4, 5, 8, 10, 12, 13, 14, 15, 19, 20,

845

Feature template For

1 w
−1 s

2 w
−1w−2 s

3 w
−1, wherelen(w

−1) = 1 s
4 start(w

−1)len(w
−1) s

5 end(w
−1)len(w

−1) s
6 end(w

−1)c0 s
7 c

−1c0 a
8 begin(w

−1)end(w
−1) s

9 w
−1c0 s

10 end(w
−2)w−1 s

11 start(w
−1)c0 s

12 end(w
−2)end(w

−1) s
13 w

−2len(w
−1) s

14 len(w
−2)w−1 s

15 w
−1t−1 s

16 t
−1t0 s

17 t
−2t−1t0 s

18 w
−1t0 s

19 t
−2w−1 s

20 w
−1t−1end(w

−2) s
21 w

−1t−1c0 s
22 c

−2c−1c0t−1, s
wherelen(w

−1) = 1
23 start(w0)t0 s
24 t

−1start(w
−1) s

25 t0c0 s, a
26 c0t0start(w0) a
27 ct

−1end(w
−1), s

wherec ∈ w
−1 andc 6= end(w

−1)
28 c0t0cat(start(w0)) s
29 ct

−1cat(end(w
−1)), s

wherec ∈ w
−1 andc 6= end(w

−1)
30 c0t0c−1t−1 s
31 c0t0c−1 a

Table 1: Feature templates.

24, 27 and 29 concern complete word information,
and they are used in the model to differentiate cor-
rect and incorrect output structures in the same way
as our Z&C08 model. Templates 6, 7, 9, 16, 17,
18, 21, 22, 23, 25, 26 and 28 concern partial word
information, whose role in the model is to indicate
the likelihood that the partial word including the cur-
rent character will become a correct full word. They
act as guidance for the action to take for the cur-

function DECODE(sent, agenda):
CLEAR(agenda)
ADDITEM(agenda, “”)
for index in [0..LEN(sent)]:

for cand in agenda:
new← APPEND(cand, sent[index])
ADDITEM(agenda, new)
for pos in TAGSET():

new← SEP(cand, sent[index], pos)
ADDITEM(agenda, new)

agenda← N-BEST(agenda)
return BEST(agenda)

Figure 1: The incremental beam-search decoder.

rent character according to the context, and are the
crucial reason for the effectiveness of the algorithm
with a small beam-size.

2.1 Decoding

The decoding algorithm builds an output candidate
incrementally, one character at a time. Each char-
acter can either be attached to the current word or
separated as the start a new word. When the current
character starts a new word, aPOS-tag is assigned to
the new word. An agenda is used by the decoder to
keep theN -best candidates during the incremental
process. Before decoding starts, the agenda is ini-
tialized with an empty sentence. When a character is
processed, existing candidates are removed from the
agenda and extended with the current character in all
possible ways, and theN -best newly generated can-
didates are put back onto the agenda. After all input
characters have been processed, the highest-scored
candidate from the agenda is taken as the output.

Pseudo code for the decoder is shown in Figure
1. CLEAR removes all items from the agenda, AD-
DITEM adds a new item onto the agenda, N-BEST

returns theN highest-scored items from the agenda,
and BEST returns the highest-scored item from the
agenda. LEN returns the number of characters in a
sentence, andsent[i] returns theith character from
the sentence. APPEND appends a character to the
last word in a candidate, and SEP joins a character
as the start of a new word in a candidate, assigning
a POS-tag to the new word.

846

Both our decoding algorithm and the decoding al-
gorithm of Z&C08 run in linear time. However, in
order to generate possible candidates for each char-
acter, Z&C08 uses an extra loop to search for pos-
sible words that end with the current character. A
restriction to the maximum word length is applied
to limit the number of iterations in this loop, with-
out which the algorithm would have quadratic time
complexity. In contrast, our decoder does not search
backword for the possible starting character of any
word. Segmentation ambiguities are resolved by bi-
nary choices between the actions append or sepa-
rate for each character, and noPOS enumeration is
required when the character is appended. This im-
proves the speed by a significant factor.

2.2 Training

The learning algorithm is based on the generalized
perceptron (Collins, 2002), but parameter adjust-
ments can be performed at any character during the
decoding process, using the “early update” mecha-
nism of Collins and Roark (2004).

The parameter vector of the model is initialized as
all zeros before training, and used to decode training
examples. Each training example is turned into the
raw input format, and processed in the same way as
decoding. After each character is processed, partial
candidates in the agenda are compared to the cor-
responding gold-standard output for the same char-
acters. If none of the candidates in the agenda are
correct, the decoding is stopped and the parameter
vector is updated by adding the global feature vector
of the gold-standard partial output and subtracting
the global feature vector of the highest-scored par-
tial candidate in the agenda. The training process
then moves on to the next example. However, if any
item in the agenda is the same as the correspond-
ing gold-standard, the decoding process moves to
the next character, without any change to the pa-
rameter values. After all characters are processed,
the decoder prediction is compared with the training
example. If the prediction is correct, the parame-
ter vector is not changed; otherwise it is updated by
adding the global feature vector of the training ex-
ample and subtracting the global feature vector of
the decoder prediction, just as the perceptron algo-
rithm does. The same training examples can be used
to train the model for multiple iterations. We use

the averaged parameter vector (Collins, 2002) as the
final model.

Pseudocode for the training algorithm is shown in
Figure 2. It is based on the decoding algorithm in
Figure 1, and the main differences are: (1) the train-
ing algorithm takes the gold-standard output and the
parameter vector as two additional arguments; (2)
the training algorithm does not return a prediction,
but modifies the parameter vector when necessary;
(3) lines 11 to 20 are additional lines of code for pa-
rameter updates.

Without lines 11 to 16, the training algorithm is
exactly the same as the generalized perceptron al-
gorithm. These lines are added to ensure that the
agenda contains highly probable candidates during
the whole beam-search process, and they are crucial
to the high accuracy of the system. As stated earlier,
the decoder relies on proper scoring of partial words
to maintain a set of high quality candidates in the
agenda. Updating the value of the parameter vector
for partial outputs can be seen as a means to ensure
correct scoring of partial candidates at any character.

2.3 Pruning

We follow Z&C08 and use several pruning methods,
most of which serve to to improve the accuracy by
removing irrelevant candidates from the beam. First,
the system records the maximum number of charac-
ters that a word with a particularPOS-tag can have.
For example, from the Chinese Treebank that we
used for our experiments, mostPOS are associated
with only with one- or two-character words. The
only POS-tags that are seen with words over ten char-
acters long are NN (noun), NR (proper noun) and
CD (numbers). The maximum word length informa-
tion is initialized as all ones, and updated according
to each training example before it is processed.

Second, a tag dictionary is used to recordPOS-
tags associated with each word. During decoding,
frequent words and words with “closed set” tags2

are only allowedPOS-tags according to the tag dic-
tionary, while other words are allowed everyPOS-tag
to make candidate outputs. Whether a word is a fre-
quent word is decided by the number of times it has
been seen in the training process. Denoting the num-

2“Closed set” tags are the set ofPOS-tags which are only
associated with a fixed set of words, according to the Penn Chi-
nese Treebank specifications (Xia, 2000).

847

function TRAIN(sent, agenda, gold-standard, ~w):
01: CLEAR(agenda)
02: ADDITEM(agenda, “”)
03: for index in [0..LEN(sent)]:
04: for cand in agenda:
05: new← APPEND(cand, sent[index])
06: ADDITEM(agenda, new)
07: for pos in TAGSET():
08: new← SEP(cand, sent[index], pos)
09: ADDITEM(agenda, new)
10: agenda← N-BEST(agenda)
11: for cand in agenda:
12: if cand = gold-standard[0:index]:
13: CONTINUE

14: ~w← ~w + Φ(gold-standard[0:index])
15: ~w← ~w - Φ(BEST(agenda))
16: return
17: if BEST(agenda) 6= gold-standard:
18: ~w← ~w + Φ(gold-standard)
19: ~w← ~w - Φ(BEST(agenda))
20: return
21: return

Figure 2: The incremental learning function.

ber of times the most frequent word has been seen
with M , a word is a frequent word if it has been
seen more thanM/5000 + 5 times. The threshold
value is taken from Z&C08, and we did not adjust
it during development. Word frequencies are initial-
ized as zeros and updated according to each training
example before it is processed; the tag dictionary is
initialized as empty and updated according to each
training example before it is processed.

Third, we make an additional record of the initial
characters for words with “closed set” tags. During
decoding, when the current character is added as the
start of a new word, “closed set” tags are only as-
signed to the word if it is consistent with the record.
This type of pruning is used in addition to the tag
dictionary to prune invalid partial words, while the
tag dictionary is used to prune complete words. The
record for initial character andPOSis initially empty,
and udpated according to each training example be-
fore it is processed.

Finally, at any decoding step, we group partial

candidates that are generated by separating the cur-
rent character as the start of a new word by the sig-
naturep0p−1w−1, and keep only the best among
those having the samep0p−1w−1. The signature
p0p−1w−1 is decided by the feature templates we
use: it can be shown that if two candidatescand1
andcand2 generated at the same step have the same
signature, and the score ofcand1 is higher than the
score ofcand2, then at any future step, the highest
scored candidate generated fromcand1 will always
have a higher score than the highest scored candidate
generated fromcand2.

From the above pruning methods, only the third
was not used by Z&C08. It can be seen as an extra
mechanism to help keep likely partial words in the
agenda and improve the accuracy, but which does
not give our system a speed advantage over Z&C08.

3 Experiments

We used the Chinese Treebank (CTB) data to per-
form one set of development tests and two sets of fi-

848

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25 30

F
-m

ea
su

re

Training iteration

beam=1
beam=2
beam=4
beam=8

beam=16
beam=32

Figure 3: The influence of beam-sizes, and the conver-
gence of the perceptron.

nal tests. TheCTB 4 was split into two parts, with the
CTB 3 being used for a 10-fold cross validation test
to compare speed and accuracies with Z&C08, and
the rest being used for development. TheCTB 5 was
used to perform the additional set of experiments to
compare accuracies with other recent work.

We use the standard F-measure to evaluate output
accuracies. For word segmentation, precision is de-
fined as the number of correctly segmented words
divided by the total number of words in the output,
and recall is defined as the number of correctly seg-
mented words divided by the total number of words
in the gold-standard output. For joint segmentation
and POS-tagging, precision is defined as the num-
ber of correctly segmented andPOS-tagged words
divided by the total number of words from the out-
put, and recall is defined as the correctly segmented
andPOS-tagged words divided by the total number
of words in the gold-standard output.

All our experiments were performed on a Linux
platform, and a single 2.66GHz Intel Core 2 CPU.

3.1 Development tests

Our development data consists of150K words in
4798 sentences.80% of the data were randomly
chosen as the development training data, while the
rest were used as the development test data. Our de-
velopment tests were mainly used to decide the size
of the beam, the number of training iterations, the ef-
fect of partial features in beam-search decoding, and
the effect of incremental learning (i.e. early update).

Figure 3 shows the accuracy curves for joint seg-
mentation andPOS-tagging by the number of train-
ing iterations, using different beam sizes. With the
size of the beam increasing from 1 to 32, the accura-
cies generally increase, while the amount of increase
becomes small when the size of the beam becomes
16. After the 10th iteration, a beam size of 32 does
not always give better accuracies than a beam size
of 16. We therefore chose 16 as the size of the beam
for our system.

The testing times for each beam size between 1
and 32 are 7.16s, 11.90s, 18.42s, 27.82s, 46.77s
and 89.21s, respectively. The corresponding speeds
in the number of sentences per second are 111.45,
67.06, 43.32, 28.68, 17.06 and 8.95, respectively.

Figure 3 also shows that the accuracy increases
with an increased number of training iterations, but
the amount of increase becomes small after the 25th
iteration. We chose 29 as the number of iterations to
train our system.

The effect of incremental training: We compare
the accuracies by incremental training using early
update and normal perceptron training. In the nor-
mal perceptron training case, lines 11 to 16 are taken
out of the training algorithm in Figure 2. The algo-
rithm reached the best performance at the 22nd iter-
ation, with the segmentation F-score being90.58%
and joint F-score being83.38%. In the incremental
training case, the algorithm reached the best accu-
racy at the 30th training iteration, obtaining a seg-
mentation F-score of91.14% and a joint F-score of
84.06%.

3.2 Final tests using CTB 3

CTB 3 consists of150K words in 10364 sentences.
We follow Z&C08 and split it into 10 equal-sized
parts. In each test, one part is taken as the test
data and the other nine are combined together as
the training data. We compare the speed and accu-
racy with the joint segmentor and tagger of Z&C08,
which is publicly available as the ZPar system, ver-
sion 0.23.

The results are shown in Table 2, where each row
shows one cross validation test. The column head-
ings “sf”, “jf”, “time” and “speed” refer to segmen-
tation F-measure, joint F-measure, testing time (in

3http://www.sourceforge.net/projects/zpar

849

Z&C08 this paper
sf jf time speed sf jf time speed

1 97.18 93.27 557.97 1.86 97.25 93.51 44.20 23.44
2 97.65 93.81 521.63 1.99 97.66 93.97 42.07 24.26
3 96.08 91.04 444.69 2.33 95.55 90.65 39.23 26.41
4 96.31 91.93 431.04 2.40 96.37 92.15 39.54 26.20
5 96.35 91.94 508.39 2.04 95.84 91.51 43.30 23.93
6 94.48 88.63 482.78 2.15 94.25 88.53 43.77 23.67
7 95.27 90.52 361.95 2.86 95.10 90.42 41.76 24.81
8 94.98 90.01 418.54 2.47 94.87 90.30 39.81 26.02
9 95.23 90.84 471.3 2.20 95.21 90.55 42.03 26.65
10 96.49 92.11 500.72 2.08 96.33 92.12 43.12 24.03
average 96.00 91.41 469.90 2.24 95.84 91.37 41.88 24.94

Table 2: Speed and acccuracy comparisons with Z&C08 by10-fold cross validation.

seconds) and testing speed (in the number of sen-
tences per second), respectively.

Our system gave a joint segmentation andPOS-
tagging F-score of91.37%, which is only 0.04%
lower than that of ZPar 0.2. The speed of our system
was over 10 times as fast as ZPar 0.2.

3.3 Final tests using CTB 5

We follow Kruengkrai et al. (2009) and split theCTB

5 into training, development testing and testing sets,
as shown in Table 3. We ignored the development
test data since our system had been developed in pre-
vious experiments.

Kruengkrai et al. (2009) made use of character
type knowledge for spaces, numerals, symbols, al-
phabets, Chinese and other characters. In the previ-
ous experiments, our system did not use any knowl-
edge beyond the training data. To make the compar-
ison fairer, we included knowledge of English let-
ters and Arabic numbers in this experiment. During
both training and decoding, English letters and Ara-
bic numbers are segmented using simple rules, treat-
ing consecutive English letters or Arabic numbers as
a single word.

The results are shown in Table 4, where row
“N07” refers to the model of Nakagawa and Uchi-
moto (2007), rows “J08a” and “b” refer to the mod-
els of Jiang et al. (2008a) and Jiang et al. (2008b),
and row “K09” refers to the models of Kruengkrai et
al. (2009). Columns “sf” and “jf” refer to segmen-
tation and joint accuracies, respectively. Our system

Sections Sentences Words

Training 1–270 18,085 493,892
400–931
1001–1151

Dev 301–325 350 6,821
Test 271–300 348 8,008

Table 3: Training, development and test data onCTB 5.

sf jf

K09 (error-driven) 97.87 93.67
our system 97.78 93.67
K09 (baseline) 97.79 93.60
J08a 97.85 93.41
J08b 97.74 93.37
N07 97.83 93.32

Table 4: Accuracy comparisons with recent studies on
CTB 5.

gave comparable accuracies to these recent works,
obtaining the best (same as the error-driven version
of K09) joint F-score.

4 Related Work

The effectiveness of our beam-search decoder
showed that the joint segmentation and tagging
problem may be less complex than previously per-
ceived (Zhang and Clark, 2008; Jiang et al., 2008a).
At the very least, the single model approach with a
simple decoder achieved competitive accuracies to
what has been achieved so far by the reranking (Shi

850

and Wang, 2007; Jiang et al., 2008b) models and
an ensemble model using machine-translation tech-
niques (Jiang et al., 2008a). This may shed new light
on joint segmentation andPOS-tagging methods.

Kruengkrai et al. (2009) and Zhang and Clark
(2008) are the most similar to our system among
related work. Both systems use a discriminatively
trained linear model to score candidate outputs. The
work of Kruengkrai et al. (2009) is based on Nak-
agawa and Uchimoto (2007), which separates the
processing of known words and unknown words,
and uses a set of segmentation tags to represent the
segmentation of characters. In contrast, our model
is conceptually simpler, and does not differentiate
known words and unknown words. Moreover, our
model is based on our previous work, in line with
Zhang and Clark (2007), which does not treat word
segmentation as character sequence labeling.

Our learning and decoding algorithms are also
different from Kruengkrai et al. (2009). While Kru-
engkrai et al. (2009) perform dynamic programming
andMIRA learning, we use beam-search to perform
incremental decoding, and the early-update version
of the perceptron algorithm to train the model. Dy-
namic programming is exact inference, for which
the time complexity is decided by the locality of
feature templates. In contrast, beam-search is ap-
proximate and can run in linear time. The param-
eter updating for our algorithm is conceptually and
computationally simpler thanMIRA , though its per-
formance can be slightly lower. However, the early-
update mechanism we use is consistent with our in-
cremental approach, and improves the learning of
the beam-search process.

5 Conclusion

We showed that a simple beam-search decoding al-
gorithm can be effectively applied to the decoding
problem for a global linear model for joint word
segmentation andPOS-tagging. By guiding search
with partial word information and performing learn-
ing for partial candidates, our system achieved sig-
nificantly faster speed with little accuracy loss com-
pared to the system of Z&C08.

The source code of our joint segmentor andPOS-
tagger can be found at:
www.sourceforge.net/projects/zpar, version 0.4.

Acknowledgements

We thank Canasai Kruengkrai for discussion on effi-
ciency issues, and the anonymous reviewers for their
suggestions. Yue Zhang and Stephen Clark are sup-
ported by the European Union Seventh Framework
Programme (FP7-ICT-2009-4) under grant agree-
ment no. 247762.

References

Eugene Charniak, Mark Johnson, Micha Elsner, Joseph
Austerweil, David Ellis, Isaac Haxton, Catherine Hill,
R. Shrivaths, Jeremy Moore, Michael Pozar, and
Theresa Vu. 2006. Multilevel coarse-to-fine PCFG
parsing. InProceedings of HLT/NAACL, pages 168–
175, New York City, USA, June. Association for Com-
putational Linguistics.

Michael Collins and Brian Roark. 2004. Incremental
parsing with the perceptron algorithm. InProceedings
of ACL, pages 111–118, Barcelona, Spain, July.

Michael Collins. 2002. Discriminative training meth-
ods for hidden Markov models: Theory and experi-
ments with perceptron algorithms. InProceedings of
EMNLP, pages 1–8, Philadelphia, USA, July.

Wenbin Jiang, Liang Huang, Qun Liu, and Yajuan Lü.
2008a. A cascaded linear model for joint Chinese
word segmentation and part-of-speech tagging. In
Proceedings of ACL/HLT, pages 897–904, Columbus,
Ohio, June.

Wenbin Jiang, Haitao Mi, and Qun Liu. 2008b. Word
lattice reranking for Chinese word segmentation and
part-of-speech tagging. InProceedings of COLING,
pages 385–392, Manchester, UK, August.

Canasai Kruengkrai, Kiyotaka Uchimoto, Jun’ichi
Kazama, Yiou Wang, Kentaro Torisawa, and Hitoshi
Isahara. 2009. An error-driven word-character hybrid
model for joint Chinese word segmentation and POS
tagging. InProceedings of ACL/AFNLP, pages 513–
521, Suntec, Singapore, August.

Tetsuji Nakagawa and Kiyotaka Uchimoto. 2007. A
hybrid approach to word segmentation and POS tag-
ging. In Proceedings of ACL Demo and Poster Ses-
sion, Prague, Czech Republic, June.

Hwee Tou Ng and Jin Kiat Low. 2004. Chinese part-of-
speech tagging: One-at-a-time or all-at-once? word-
based or character-based? InProceedings of EMNLP,
Barcelona, Spain.

Brian Roark and Kristy Hollingshead. 2008. Classify-
ing chart cells for quadratic complexity context-free
inference. InProceedings of COLING, pages 745–
752, Manchester, UK, August. Coling 2008 Organiz-
ing Committee.

851

Yanxin Shi and Mengqiu Wang. 2007. A dual-layer CRF
based joint decoding method for cascade segmentation
and labelling tasks. InProceedings of IJCAI, Hyder-
abad, India.

Fei Xia, 2000.The part-of-speech tagging guidelines for
the Chinese Treebank (3.0).

Yue Zhang and Stephen Clark. 2007. Chinese segmenta-
tion with a word-based perceptron algorithm. InPro-
ceedings of ACL, pages 840–847, Prague, Czech Re-
public, June.

Yue Zhang and Stephen Clark. 2008. Joint word segmen-
tation and POS tagging using a single perceptron. In
Proceedings of ACL/HLT, pages 888–896, Columbus,
Ohio, June.

852

