A An Example Run of the Algorithm in Figure 3

Figure 1 gives an example run of the algorithm. After 31 iterations the algorithm detects that the dual is no longer decreasing rapidly enough, and runs for $K = 10$ additional iterations, tracking which constraints are violated. Constraints $y(6) = 1$ and $y(10) = 1$ are each violated 10 times, while other constraints are not violated. A recursive call to the algorithm is made with $C = \{6, 10\}$, and the algorithm converges in a single iteration, to a solution that is guaranteed to be optimal.

B Speeding up the DP: A* Search

In the algorithm depicted in Figure 3, each time we call $Optimize(C \cup C', u)$, we expand the number of states in the dynamic program by adding hard constraints. On the graph level, adding hard constraints can be viewed as expanding an original state in Y' to $2^{|C|}$ states in Y'_C, since now we keep a bit-string b_C of length $|C|$ in the states to record which words in C have or haven’t been translated. We now show how this observation leads to an A* algorithm that can significantly improve efficiency when decoding with $C \neq \emptyset$.

For any state $s = (w_1, w_2, n, l, m, r, b_C)$ and Lagrange multiplier values $u \in \mathbb{R}^N$, define $\beta_C(s, u)$ to be the maximum score for any path from the state s to the end state, under Lagrange multipliers u, in the graph created using constraint set C. Define $\pi(s) = (w_1, w_2, n, l, m, r)$, that is, the corresponding state in the graph with no constraints ($C = \emptyset$). Then for any values of s and u, we have

$$\beta_C(s, u) \leq \beta_0(\pi(s), u)$$

That is, the maximum score for any path to the end state in the graph with no constraints, forms an upper bound on the value for $\beta_C(s, u)$.

This observation leads directly to an A* algorithm, which is exact in finding the optimum solution, since we can use $\beta_0(\pi(s), u)$ as the admissible estimates for the score from state s to the goal (the end state). The $\beta_0(s', u)$ values for all s' can be calculated by running the Viterbi algorithm using a backwards path. With only $1/2^{|C|}$ states, calculating $\beta_0(s', u)$ is much cheaper than calculating $\beta_C(s, u)$ directly. Guided by $\beta_0(s', u)$, $\beta_C(s, u)$ can be calculated efficiently by using A* search.

Using the A* algorithm leads to significant improvements in efficiency when constraints are added. Section 6 presents comparison of the running time with and without A* algorithm.
which constraints are violated most often. After constraints, we have

\[y \]

have not been violated during the

\[K \]

iterations. Thus, hard constraints for word 6 and 10 are added. After adding the constraints, we have \(y^i(i) = 1 \) for \(i = 1 \ldots N \), and the translation is returned, with a guarantee that it is optimal.

Figure 1: An example run of the algorithm in Figure 3. At iteration 32, we start the \(K = 10 \) iterations to count which constraints are violated most often. After \(K \) iterations, the count for 6 and 10 is 10, and all other constraints have not been violated during the \(K \) iterations. Thus, hard constraints for word 6 and 10 are added. After adding the constraints, we have \(y^i(i) = 1 \) for \(i = 1 \ldots N \), and the translation is returned, with a guarantee that it is optimal.