1 Number of Operations in Shift-Reduce and CKY CCG Parsers

Let Λ be a CCG lexicon, \mathcal{R}_b the set of binary CCG rules, and \mathcal{R}_u the set of unary CCG rules. While in practice lexical entries may map phrases to categories, for simplification, we assume that each lexical entry contains only one token.\footnote{Generalization to multiple tokens is straightforward.} Let $|\lambda|$ be the number of lexical entries for a token in Λ. We assume an input sentence x with m tokens. We define an operation in shift-reduce parsing to be the application of a single action to a configuration. In CKY, an operation is an application of a unary rule to a cell in the chart, or a binary rule to a pair of adjacent cells.

CKY CCG Semantic Parser CKY parsing starts with populating the chart using the lexicon Λ. Under our single-token assumption, this requires at most $m|\lambda|$ operations. In practice, though, the number of categories maintained in each cell is capped by a beam of size k. We denote a cell that spans the token sequence $\langle x_i, \ldots, x_j \rangle$ as $[i,j]$. Given the cell $[i,j]$, $j > i$, CKY considers all possible splits $\{[i,l],[l+1,j]\} | i \leq l \leq j$ of this cell and applies binary rules $b \in \mathcal{R}_b$ to the categories in the cells $[i,l]$ and $[l+1,j]$. This requires $mk^2|\mathcal{R}_b|$ operations due to $O(m)$ possible splits, k^2 possible categories from the beams of the two cells, and $|\mathcal{R}_b|$ binary rules. There is a total of m^2 cells. Therefore, the total number of operations for binary rules is $m^2k^2|\mathcal{R}_b|$. For every cell, we can also apply a unary rule from \mathcal{R}_u. The overall number of unary operations is $m^2k|\mathcal{R}_u|$. The total number of operations is $O(m|\lambda| + m^3k^2|\mathcal{R}_b| + m^2k|\mathcal{R}_u|)$.

Shift-Reduce CCG Semantic Parser The shift-reduce parser also uses a beam of size k. The beam maintains the k max-scoring configurations. At each step, it applies all possible actions to each configuration in the beam to generate a new configuration. The top-k new configurations are then retained in the beam. We can perform shift for each token on the buffer, which give m operations. Since binary reduce removes an element from the stack, we can do at most $m - 1$ such operations. We disallow two consecutive unary reduce actions. Therefore, unary reduce actions must follow a shift or a binary reduce, which translates to at most $m - 1 + m = 2m - 1$ operations. Therefore, the parser necessarily terminates after at most $4m - 2$ beam expansions. For a given configuration, we can apply $|\lambda| + |\mathcal{R}_b| + |\mathcal{R}_u|$ actions. In every step of the algorithm there are at most k configurations to process, giving a total of $O(4mk(|\lambda| + |\mathcal{R}_b| + |\mathcal{R}_u|))$ operations.

Quantitative Comparison In our experiments, the lexicon Λ contains 1.7M entries for 11K words and phrases. If we define $|\lambda|$ to be the mean number of entries, we get $|\lambda| = 170$. The average sentence length m in the data is 25. Our CCG has 30 binary rules (\mathcal{R}_b) and 24 unary rules (\mathcal{R}_u). Artzi et al. (2015) use a beam size of 50 in their CKY parser, which gives roughly 10^9 operations per sentence of length 25. For our final results, we use a beam of 512, which gives roughly 10^7 operations for the same length, two orders of magnitude fewer.
Table 1: Sparse features used for action embedding

2 Action Features

Table 1 lists the features used to compute action embeddings \(\phi(a, c) \). Each feature is mapped to its embedding representation via a lookup table. The embeddings are then concatenated to create the action representation. We use a factored lexicon representation (Kwiatkowski et al., 2011), where entries are dynamically generated by combining lexemes and templates. For example, the lexical entry: \(\text{remain} \vdash S\langle NP/p\rangle/(N[p]/N[p]) : \lambda f.\lambda x.f(\lambda r.\text{remain-01}(r) \land \text{ARG1}(r, x)) \) is generated from the lexeme \(\langle \text{remain}, \{\text{remain-01}\} \rangle \) and the template \(\lambda v_1.[S\langle NP/p\rangle/(N[p]/N[p]) : \lambda f.\lambda x.f(\lambda v_1(r) \land \text{ARG1}(r, x))] \). Feature type dimensionality was selected based on the possible number of features for the type. For example, there are many more lexemes than part-of-speech tags, requiring a relatively higher dimensionality for lexeme features. If more than one feature is active for a given feature type, we average the embeddings in the action representation. Additionally, we learn inactive embedding for every feature type, which is used when there are no active features of this type.

3 Embedding logical forms

Given a logical form \(z \), its embedded representation is computed by the recursive function \(\psi(z) \). We use simply-typed lambda calculus logical forms. A logical form is defined with four base cases:

- Constant \(c \)
- Variable \(v \)
- Literal \(p(z_1, \ldots, z_k) \), where the predicate \(p \) is a logical form and the arguments \(z_1, \ldots, z_k \) are logical forms
- Lambda term \(\lambda v.z_1 \), where \(v \) is a variable and the body \(z_1 \) is a logical form

Each logical form is typed. The function \(\psi(z) \) follows these base cases to compute the embedding of \(z \). Algorithm 1 describes \(\psi(z) \). The recursive combination is achieved with a single-layer neural network parameterized by \(W_r, \delta_r \), and the \text{tanh} activation function. The embedding of a constant \(c \) is a combination of its name and type embeddings, each derived from a lookup table (line 2). Given a
Algorithm 1 \(\psi \): Embeds a typed lambda calculus expression.

Input: A logical expression or a list of expressions \(e \), embedding lookup tables \(U \) and \(V \) for logical constants and types.

Definitions: \([;] \) represents concatenation. \(W_r \) is a \(M_r \times 2M_r \) matrix and \(\delta_r \in \mathbb{R}^{M_r} \) is a bias term. We use \(c, v, \) and \(z \) for constant, variable, and generic logical form.

Output: Embedding \(\nu \in \mathbb{R}^{M_r} \)

1: \(\text{CASE } e \)
2: \(c : \tanh(W_r([U[c.name]; V[c.type]]) + \delta_r) \)
3: \(v : V[v.type] \)
4: \([z_1 \cdots z_k] : \tanh(W_r[\psi(p); \psi([z_1 \cdots z_k])] + \delta_r) \)
5: \(\lambda v, z : \tanh(W_r[\psi(v); \psi(z)] + \delta_r) \)

variable \(v \), its embedding is given via a lookup table \(V \) indexed by variable types (line 3). Literals are embedded by recursively embedding their arguments and combining with the predicate embedding (lines 4-5). Finally, for lambda terms, the variable embedding is combined with the body embedding (line 6). The logical form embedding size \(M_r \) is 35.

All parameters \((W_r, \delta_r, \) and all lookup embeddings) are initialized using the Glorot and Bengio (2010) scheme, similar to the other parameters in the shift-reduce parser.

4 Word Skipping

Since word skipping is never selected during training, the model learns to discourage it. Therefore, we define the term \(\epsilon(a) \), where \(\epsilon(a) = \gamma \) if the action is a \textsc{Shift} that skips the next word, otherwise \(\epsilon(a) = 0 \). In practice, this is accomplished by adding special lexical entries to the lexicon that mark skipping. The probability of action \(a \) given configuration \(c \) then incorporates the term \(\epsilon(a) \):

\[
p(a \mid c) = \frac{\exp \{ \phi(a, c)W_cF(\xi(c)) + \epsilon(a) \}}{\sum_{a' \in A(c)} \exp \{ \phi(a', c)W_cF(\xi(c)) + \epsilon(a') \}}.
\]

We tune \(\gamma \) on a small subset of the development data and set it to \(\gamma = 1.0 \).

References

