1 Mechanical Turk Questions

Figures 1-3 show the wording and format of the questions as presented to mechanical turk users.

![Screen shot for the Mechanical Turk question for determining if mis-ranked phrases are good approximations of the true phrase.](image)

Figure 1: Screen shot for the Mechanical Turk question for determining if mis-ranked phrases are good approximations of the true phrase.
Figure 2: Screen shot for the Mechanical Turk question used to determine if NNSE/CNNSE/SVD dimensions are interpretable and coherent.

Figure 3: Screen shot for the Mechanical Turk question used to determine if NNSE or CNNSE phrasal representations are consistent.
Table 1: A qualitative evaluation of CNNSE interpretable dimensions for several phrases and their constituent words. For each word or phrase the top 5 scoring dimensions are selected. Then, for each selected dimension the interpretable summarization is given, which reports the top scoring words in that dimension.

<table>
<thead>
<tr>
<th>Adjective</th>
<th>Noun</th>
<th>Phrase</th>
<th>Estimated Phrase</th>
</tr>
</thead>
<tbody>
<tr>
<td>negative aspects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intruders, intrusions, overflows</td>
<td>facets, topics, different aspects</td>
<td>consequences, environmental consequences, serious consequences</td>
<td>facets, topics, different aspects</td>
</tr>
<tr>
<td>consequences, environmental consequences, serious consequences</td>
<td>underpinnings, arousal, implications</td>
<td>features, oddities, standard features</td>
<td>underpinnings, arousal, implications</td>
</tr>
<tr>
<td>instinctive, conditioned, oscillatory</td>
<td>features, oddities, standard features</td>
<td>intruders, intrusions, overflows</td>
<td>intruders, intrusions, overflows</td>
</tr>
<tr>
<td>indecent, unlawful, obscene</td>
<td>workings, truths, essence</td>
<td>facets, topics, different aspects</td>
<td>consequences, environmental consequences, serious consequences</td>
</tr>
<tr>
<td>post modern, preconceived, psychoanalytic</td>
<td>key factors, key elements, main factors</td>
<td>contingencies, specific items, specific terms</td>
<td>features, oddities, standard features</td>
</tr>
<tr>
<td>military aid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>servicemen, commandos, military intelligence</td>
<td>guidance, advice, assistance</td>
<td>servicemen, commandos, military intelligence</td>
<td>guidance, advice, assistance</td>
</tr>
<tr>
<td>guerrilla paramilitary, anti-terrorist</td>
<td>mentoring, tutoring, internships</td>
<td>guidance, advice, assistance</td>
<td>servicemen, commandos, military intelligence</td>
</tr>
<tr>
<td>conglomerate, giants, conglomerates</td>
<td>award, awards, honors</td>
<td>compliments, congratulations, replies</td>
<td>mentoring, tutoring, internships</td>
</tr>
<tr>
<td>managerial, logistical, governmental</td>
<td>certificates, degrees, bachelor</td>
<td>training, appropriate training, advanced training</td>
<td>award, awards, honors</td>
</tr>
<tr>
<td>bad behavior</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Great place, place, fantastic place</td>
<td>scholastic achievement, ethical behavior, behaviors</td>
<td>scholastic achievement, ethical behavior, behaviors</td>
<td>scholastic achievement, ethical behavior, behaviors</td>
</tr>
<tr>
<td>antithesis, affront, omen</td>
<td>dating, intimacy, courtship</td>
<td>intruders, intrusions, overflows</td>
<td>dating, intimacy, courtship</td>
</tr>
<tr>
<td>thankful, grateful, sorry</td>
<td>morphology, phylogeny, physiology</td>
<td>inconsistencies, faults, flaws</td>
<td>morphology, phylogeny, physiology</td>
</tr>
<tr>
<td>goofy, crazy, fucking</td>
<td>psychosis, depression, disorder</td>
<td>comm, wildness, haunting</td>
<td>psychosis, depression, disorder</td>
</tr>
<tr>
<td>go-ahead, spanking, shift</td>
<td>invited, attitudes, encouraged</td>
<td>pasts, non-commercial use, mind-set</td>
<td>invited, attitudes, encouraged</td>
</tr>
</tbody>
</table>
2 CNNSE Algorithm

Recall that NNSE seeks a lower dimensional sparse representation for \(w \) words using the \(c \)-dimensional corpus statistics in a matrix \(X \in \mathbb{R}^{w \times c} \). NNSE minimizes the following objective function:

\[
\argmin_{A,D} \frac{1}{2} \sum_{i=1}^{w} \| X_{i,:} - A_{i,:} \times D \|^2 + \lambda_1 \| A \|_1
\]

st: \(D_{i,:}^T D_{i,:} \leq 1, \forall 1 \leq i \leq \ell \)

\(A_{i,j} \geq 0, 1 \leq i \leq w, 1 \leq j \leq \ell \)

where \(A_{i,j} \) indicates the entry at the \(i \)th row and \(j \)th column of matrix \(A \), and \(A_{i,:} \) indicates the \(i \)th row of the matrix. The solution includes a matrix \(A \in \mathbb{R}^{w \times \ell} \) that is sparse, non-negative, and represents word semantics in an \(\ell \)-dimensional latent space. \(D \in \mathbb{R}^{\ell \times c} \) is the encoding of corpus statistics in the latent space. The \(L_1 \) constraint encourages sparsity in \(A \); \(\lambda_1 \) is a hyperparameter. Equation 2 constrains \(D \) to eliminate solutions where the norm of \(A \) is made arbitrarily small by making the norm of \(D \) arbitrarily large. Equation 3 ensures that \(A \) is non-negative. Together, \(A \) and \(D \) factor the original corpus statistics matrix \(X \) in a way that minimizes reconstruction error while respecting sparsity and non-negativity constraints.

Consider a phrase \(p \) made up of words \(i \) and \(j \). In the most general setting, the following composition constraint could be applied to the rows of matrix \(A \) from Equation 1 corresponding to \(p, i \) and \(j \):

\[
A_{(p,:)} = f(A_{(i,:)}, A_{(j,:)})
\]

where \(f \) is some composition function. The composition function constrains the space of learned latent representations \(A \in \mathbb{R}^{w \times \ell} \) to be those solutions that are compatible with the composition function defined by \(f \). Incorporating \(f \) into Equation 1 we have:

\[
\argmin_{A,D,\Omega} \sum_{i=1}^{w} \frac{1}{2} \| X_{i,:} - A_{i,:} \times D \|^2 + \lambda_1 \| A \|_1 +
\lambda_c \sum_{\text{phrase } p, \ p=(i,j)} \left(A_{(p,:)} - f(A_{(i,:)}, A_{(j,:)}) \right)^2
\]

Where each phrase \(p \) is comprised of words \((i,j) \) and \(\Omega \) represents all parameters of \(f \) that may need to be optimized. We have added a squared loss term for the composition function, and a new regularization parameter \(\lambda_c \) to weight the importance of respecting composition. We call this new formulation Compositional Non-Negative Sparse Embeddings (CNNSE).

In this work, we choose \(f \) to be weighted addition because it has has been shown to work well for adjective noun and noun noun composition [Mitchell and Lapata, 2010; Dinu et al., 2011], and because it leads to a formulation that lends itself well to optimization. Weighted addition is:

\[
f(A_{(i,:)}, A_{(j,:)}) = \alpha A_{(i,:)} + \beta A_{(j,:)}
\]

This choice of \(f \) requires that we simultaneously optimize for \(A, D, \alpha \) and \(\beta \).

We can further simplify the loss function by constructing a matrix \(B \) that imposes the composition by addition constraint. \(B \) is constructed so that for each phrase \(p = (i,j): B_{(p,p)} = 1, B_{(p,i)} = -\alpha, \) and \(B_{(p,j)} = -\beta \). For our models, we use \(\alpha = \beta = 0.5 \), which serves to average the single word representations. The matrix \(B \) allows us to reformulate the loss function from Eq 5:

\[
\argmin_{A,D} \frac{1}{2} \| X - AD \|_F^2 + \lambda_1 \| A \|_1 + \frac{1}{2} \lambda_c \| BA \|_F^2
\]
Algorithm 1 CNNSE

Input: $X, B, \lambda_1, \lambda_c$

Randomly initialize A, D

prevL $\leftarrow 0$

curL $\leftarrow \frac{1}{2} \|X - AD\|_F^2 + \lambda_1 \|A\|_1 + \frac{1}{2} \lambda_c \|BA\|_F^2$

while (prevL - curL) \leq prevL*10^{-3} do

$A \leftarrow \text{ADMM}(D, X, B, \lambda_1, \lambda_c)$

$D \leftarrow \text{gradientDescent}(D, X, A)$

prevL \leftarrow curL

curL $\leftarrow \frac{1}{2} \|X - AD\|_F^2 + \lambda_1 \|A\|_1 + \frac{1}{2} \lambda_c \|BA\|_F^2$

end while

return A, D

where F indicates the Frobenius norm. B acts as a selector matrix, subtracting from the latent representation of the phrase the average latent representation of the phrase’s constituent words.

We now have a loss function that is the sum of several convex functions of A: squared loss, L_1 regularization and the composition constraint. This sum of sub-functions is the format required for the alternating directions method of multipliers (ADMM) (Boyd 2010). ADMM substitutes a dummy variable z for A in the sub-functions:

$$\argmin_{A,D} \frac{1}{2} \|X - AD\|_F^2 + \lambda_1 \|z_1\|_1 + \frac{1}{2} \lambda_c \|Bz_c\|_F^2$$

subject to:

$$A = z_1$$

$$A = z_c$$

$$D_i D_i^T \leq 1, \forall 1 \leq i \leq \ell$$

$$A_{i,j} \geq 0, 1 \leq i \leq w, 1 \leq j \leq \ell$$

Equations 9 and 10 ensure that the dummy variables match A; ADMM uses an augmented Lagrangian to incorporate and relax these new constraints. The augmented Lagrangian for the above optimization problem above is:

$$L_{\rho}(A, z_1, z_c, u_1, u_c) = \frac{1}{2} \|X - AD\|_F^2 + \lambda_1 \|z_1\|_1 + \frac{1}{2} \lambda_c \|Bz_c\|_F^2 + u_1(A - z_1) + u_c(A - z_c) + \frac{\rho}{2} (\|A - z_1\|_2^2 + \|A - z_c\|_2^2)$$

We optimize for A, z_1 and z_c separately, and then update the dual variables (see Algorithm 2 for solutions and updates). ADMM has nice convergence properties for convex functions, as we have when solving for A. Code for ADMM is available online[^1]. ADMM is used when solving for A in the Online Dictionary Learning algorithm, solving for D remains unchanged from the NNSE implementation (see Algorithm 1).

[^1]: http://www.stanford.edu/~boyd/papers/admm/
Algorithm 2 ADMM solution for augmented Lagrangian in equation 13

Input: $D, X, B, \lambda_1, \lambda_c$

{Lagrangian parameter}

$\rho \leftarrow 1$

{Dummy Variables}

$z_1 \leftarrow 0_{w, \ell}$

$z_c \leftarrow 0_{w, \ell}$

{Dual Variables}

$u_1 \leftarrow 0_{w, \ell}$

$u_c \leftarrow 0_{w, \ell}$

$dti \leftarrow DD^T + 2 \cdot \rho \cdot I_m$

while not converged do

$A \leftarrow (XD^T + \rho (z_1 + z_c) - (u_1 + u_c)) / dti$

$z_c \leftarrow (\rho \cdot A + u_c) / (\lambda_c \cdot (B' \cdot B) + \rho \cdot I_w)$

$\gamma \leftarrow A + u_1 / \rho$

$\kappa \leftarrow \lambda_1 / \rho$

{Soft Threshold Operator for L_1 constraint} $(a)_+ \text{ is shorthand for max}(0, a)$

$z_1 = (\gamma - \kappa)_+ - (-\gamma - \kappa)_+$

{Update Dual Variables}

$u_1 = u_1 + \rho \cdot (A - z_1)$

$u_c = u_c + \rho \cdot (A - z_c)$

end while

return A

References

