A Detailed Architecture

This appendix describes in detail the implementation of the self-attentive residual decoder for NMT, which builds on the attention-based NMT implementation of dl4mt-tutorial.

The input of the model is a source sentence denoted as 1-of-k coded vector, where each element of the sequence corresponds to a word:

\[x = (x_1, x_2, ..., x_m), x_i \in \mathbb{R}^V \]
and the output is a target sentence denoted as well as 1-of-k coded vector:

\[y = (y_1, y_2, ..., y_n), y_i \in \mathbb{R}^V \]
where \(V \) is the size of the vocabulary of target and source side, \(m \) and \(n \) are the lengths of the source and target sentences respectively. We omit the bias vectors for simplicity.

A.1 Encoder

Each word of the source sentence is embedded in a \(d \)-dimensional vector space using the embedding matrix \(E \in \mathbb{R}^{e \times V} \). The hidden states are \(2d \)-dimensional vectors modeled by a bi-directional GRU. The forward states \(\hat{h} = (\hat{h}_1, ..., \hat{h}_m) \) are computed as:

\[\hat{h}_i = \frac{\sum_j e^{j}}{\sum_j e^{j}} \sum_j e^{j} tanh(W_{d} s_{t-1} + W_{e} h_{i}) \]

Here, \(y_t \) and \(y_{t-1} \) are the previous word and target language. \(W_d, W_{e} \) are weight matrices. The backward states \(\hat{h} = (\hat{h}_1, ..., \hat{h}_m) \) are computed in similar manner. The embedding matrix \(E \) is shared for both passes, and the final hidden states are formed by the concatenation of them:

\[h_i = [\hat{h}_i, \hat{h}_i^\top] \]

A.2 Attention Mechanism

The context vector at time \(t \) is calculated by:

\[c_t = \sum_{i=1}^{m} \alpha_i^t h_i \]

where

\[\alpha_i^t = \frac{exp(\epsilon_i^t)}{\sum_j exp(\epsilon_j^t)} \]
\[\epsilon_i^t = v^t_i tanh(W_{d} s_{t-1} + W_{e} h_{i}) \]

Here, \(v_a \in \mathbb{R}^d, W_d \in \mathbb{R}^{d \times d} \) and \(W_{e} \in \mathbb{R}^{d \times 2d} \) are weight matrices.

A.3 Decoder

The input of the decoder are the previous word \(y_{t-1} \) and the context vector \(c_t \), the objective is to predict \(y_t \). The hidden states of the decoder \(s = (s_1, ..., s_n) \) are initialized with the mean of the context vectors:

\[s_0 = tanh(W_{init} \frac{1}{m} \sum_{i=1}^{m} c_i) \]

where \(W_{init} \in \mathbb{R}^{d \times 2d} \) is a weight matrix, \(m \) is the size of the source sentence. The following hidden states are calculated with a GRU conditioned over the context vector at time \(t \) as follows:

\[s_t = z_t \odot s_t' + (1 - z_t) \odot s_t'' \]

where

\[s_t'' = tanh(Ey_{t-1} + Ut \odot st-1 + Ct) \]
\[z_t = \sigma(W_z Ey_{t-1} + Ut s_{t-1} + Ct) \]
\[r_t = \sigma(W_r Ey_{t-1} + Ut s_{t-1} + Ct) \]

Here, \(E \in \mathbb{R}^{e \times V} \) is the embedding matrix for the target language. \(W_z, W_r, W_{e} \in \mathbb{R}^{d \times e}, U_t, U_r \in \mathbb{R}^{d \times d}, \) and \(C, C_z, C_r \in \mathbb{R}^{d \times 2d} \) are weight matrices. The intermediate vector \(s_t' \) is calculated from a simple GRU:

\[s_t' = GRU(y_{t-1}, st-1) \]

In the attention-based NMT model, the probability of a target word \(y_t \) is given by:

\[p(y_t | s_t, y_{t-1}, c_t) = \text{softmax}(W_y tanh(W_s s_t + W_y y_{t-1} + W_c c_t)) \]

Here, \(W_y \in \mathbb{R}^{e \times e}, W_{st} \in \mathbb{R}^{e \times d}, W_{y} \in \mathbb{R}^{e \times e}, W_{ct} \in \mathbb{R}^{e \times 2d} \) are weight matrices.
A.3.1 Self-Attentive Residual Connections

In our model, the probability of a target word y_t is given by:

$$p(y_t|s_t, d_t, c_t) = \text{softmax}(W_o \cdot \text{tanh}(W_st + W_dt d_t + W_c c_t))$$

Here, $W_o \in \mathbb{R}^{V \times e}$, $W_s \in \mathbb{R}^{e \times d}$, $W_dt, W_y \in \mathbb{R}^{e \times e}$, $W_c \in \mathbb{R}^{e \times 2d}$, and $W_m \in \mathbb{R}^{d \times d}$ are weight matrices. The summary vector d_t can be calculated in different manners based on previous words y_1 to y_{t-1}. First, a simple average:

$$d_t^{avg} = \frac{1}{t-1} \sum_{i=1}^{t-1} y_i$$

The second, by using an attention mechanism:

$$d_t^{avg} = \sum_{i=1}^{t-1} \alpha_i^t y_i$$

where

$$\alpha_i^t = \frac{\exp(e_i^t)}{\sum_{j=1}^{t-1} \exp(e_j^t)}$$

$$e_i^t = v^t \tanh(W_y y_i)$$

where $v \in \mathbb{R}^e$, $W_y \in \mathbb{R}^{e \times e}$ are weight matrices.

A.3.2 Memory RNN

This model modifies the recurrent layer of the decoder as follows:

$$s_t = z_t \odot s'_t + (1 - z_t) \odot s''_t$$

where

$$s'_t = \text{tanh}(Ey_{t-1} + U[r_t \odot \tilde{s}_t] + Cc_t)$$

$$z_t = \sigma(W_s Ey_{t-1} + U_s \tilde{s}_t + C_e c_t)$$

$$r_t = \sigma(W_r Ey_{t-1} + U_r \tilde{s}_t + C_r c_t)$$

Here, $E \in \mathbb{R}^{e \times V}$ is the embedding matrix for the target language, $W, W_s, W_r \in \mathbb{R}^{d \times e}, U, U_s, U_r \in \mathbb{R}^{d \times d}$, and $C, C_s, C_r \in \mathbb{R}^{d \times 2d}$ are weight matrices. The intermediate vector s'_t is calculated from a simple GRU:

$$s'_t = \text{GRU}(y_{t-1}, \tilde{s}_t)$$

The recurrent vector \tilde{s}_t is calculated as following:

$$\tilde{s}_t = \sum_{i=1}^{t-1} \alpha_i^t s_i$$

where

$$\alpha_i^t = \frac{\exp(e_i^t)}{\sum_{j=1}^{t-1} \exp(e_j^t)}$$

$$e_i^t = v^t \tanh(W_m s_i + W_s s_t)$$

where $v \in \mathbb{R}^d$, $W_m \in \mathbb{R}^{d \times a}$, and $W_s \in \mathbb{R}^{d \times d}$ are weight matrices.

A.3.3 Self-Attentive RNN

The formulation of this decoder is as following:

$$p(y_t|y_1, ..., y_{t-1}, c_t) \approx \text{softmax}(W_o \cdot \text{tanh}(W_st + W_y y_{t-1} + W_c c_t + W_m \tilde{s}_t))$$

Here, $W_o \in \mathbb{R}^{V \times e}$, $W_s \in \mathbb{R}^{e \times d}$, $W_y \in \mathbb{R}^{e \times e}$, $W_c \in \mathbb{R}^{e \times 2d}$, and $W_m \in \mathbb{R}^{d \times d}$ are weight matrices.

$$\tilde{s}_t = \sum_{i=1}^{t-1} \alpha_i^t s_i$$

$$\alpha_i^t = \frac{\exp(e_i^t)}{\sum_{j=1}^{t-1} \exp(e_j^t)}$$

$$e_i^t = v^t \tanh(W_m s_i + W_s \tilde{s}_t)$$

where $v \in \mathbb{R}^d$, $W_m \in \mathbb{R}^{d \times a}$, and $W_s \in \mathbb{R}^{d \times d}$ are weight matrices.