A Supplementary Material

A.1 Proof of Proposition 1

We will show that, given an arbitrary strictly-ordered d-tree D, we can perform an invertible transformation to turn it into a binary c-tree C; and vice-versa. Let D be given. We visit each node $h \in \{1, \ldots, L\}$ and split it into $K + 1$ nodes, where $K = |M_h|$, organized as a linked list, as Figure 3 illustrates (this will become the spine of h in the c-tree). For each modifier $m_k \in M_h$ with $m_1 \prec_h \ldots \prec_h m_K$, move the tail of the arc $\langle h, m_k, Z_k \rangle$ to the $(K + 1 - k)$th node of the linked list and assign the label Z_k to this node, letting h be its lexical head. Since the incoming and outgoing arcs of the linked list component are the same as in the original node h, the tree structure is preserved. After doing this for every h, add the leaves and propagate the yields bottom up. It is straightforward to show that this procedure yields a valid binary c-tree. Since there is no loss of information (the orders \prec_h are implied by the order of the nodes in each spine), this construction can be inverted to recover the original d-tree. Conversely, if we start with a binary c-tree, traverse the spine of each h, and attach the modifiers $m_1 \prec_h \ldots \prec_h m_K$ in order, we get a strictly ordered d-tree (also an invertible procedure).

A.2 Proof of Proposition 3

We need to show that (i) Algorithm 1, when applied to a continuous c-tree C, retrieves a head ordered d-tree D which is projective and has the nesting property, (ii) vice-versa for Algorithm 2. To see (i), note that the projectiveness of D is ensured by the well-known result of Gaifman (1965) about the projection of continuous trees. To show that it satisfies the nesting property, note that nodes higher in the spine of a word h are always attached by modifiers farther apart (otherwise edges in C would cross, which cannot happen for a continuous C). To prove (ii), we use induction. We need to show that every created c-node in Algorithm 2 has a contiguous span as yield. The base case (line 3) is trivial. Therefore, it suffices to show that in line 8, assuming the yields of (the current) $\psi(h)$ and each $\psi(m)$ are contiguous spans, the union of these yields is also contiguous. Consider the node v when these children have been appended (line 9), and choose $m \in M_j^h$ arbitrarily. We only need to show that for any d between h and m, d belongs to the yield of v. Since D is projective and there is a d-arc between h and m, we have that d must descend from h. Furthermore, since projective trees cannot have crossing edges, we have that h has a unique child a, also between h and m, which is an ancestor of d (or d itself). Since a is between h and m, from the nesting property, we must have $\langle h, m, \ell \rangle \not\prec_h \langle h, a, \ell' \rangle$. Therefore, since we are processing the modifiers in order, we have that $\psi(a)$ is already a descendent of v after line 9, which implies that the yield of $\psi(a)$ (which must include d, since d descends from a) must be contained in the yield of v.