1) Given unlabeled conversations, how can a system automatically induce and organize domain-specific concepts?

- **Ontology Induction** (Chen et al., 2013 & 2014)
 - Frame-semantic parsing on ASR results (Das et al., 2013)
 - Local: slot candidate
 - Lexical unit → slot filler

- **Structure Learning** (Chen et al., 2015a)
 - Type syntax dependencies on ASR

2) With the automatically acquired knowledge, how can a system understand utterances?

- **Semantic Decoding** (Chen et al., 2015b) → **Behavior Prediction**
 - **1st Issue**: How to induce domain-specific concepts?
 - **Relation Propagation Model**
 - **Feature Knowledge Graph**
 - **Concept Knowledge Graph**
 - Assumption: The domain-specific features/concepts have more dependency to each other.
 - **Objective**: \(\sum_{f' \in \mathcal{F}} \sum_{f \in \mathcal{G}} \ln \sigma(f) > 0 \)
 - **Matrix Factorization (MF)**
 - Model implicit feedback
 - Objective: \(p(f^+) > p(f^-) \)
 - **2nd Issue**: Hidden semantics cannot be observed but may benefit understanding performance.

- **Semantic Observation**
 - **Utterance 1**: "I would like a cheap restaurant"
 - **Utterance 2**: "Find a restaurant with Chinese food"

Ontology Induction

- **Feature Model**
- **Relation Model**
- **Concept Model**
- **Graph Structure**

SLU Modeling by Matrix Factorization

- **1st Issue**: How to induce domain-specific concepts?
 - **Relation Propagation Model**
 - **Feature Knowledge Graph**
 - **Concept Knowledge Graph**
 - Assumption: The domain-specific features/concepts have more dependency to each other.
 - **Objective**: \(\sum_{f' \in \mathcal{F}} \sum_{f \in \mathcal{G}} \ln \sigma(f) > 0 \)

Semantic Decoding

- **Utterance 1**: "I would like a cheap restaurant"
- **Utterance 2**: "Find a restaurant with Chinese food"

Behavior Prediction

- **SLU Component**
- **Domain-Specific Ontology**
- **Semantic Decoding**
- **Behavior Prediction**

Framework

- **Knowledge Acquisition**
 - **Ontology Induction**
 - **Frame Induction**
 - **Structure Learning**

- **SLU Modeling by Matrix Factorization**
 - **Feature Relation Model**
 - **Relation Propagation Model**
 - **Semantic Decoding**
 - **Behavior Prediction**

Goal

- **Can a dialogue system automatically learn open domain knowledge and then understand users?**
 - Domain: restaurant recommendation in an in-car setting (WER = 37%)
 - Dialogue slots: addr, area, food, phone, postcode, pricerange, task, type