End-to-End Non-Factoid Question Answering with an Interactive Visualization of Neural Attention Weights

Andreas Rücklé and Iryna Gurevych
Ubiquitous Knowledge Processing Lab (UKP)
Department of Computer Science, Technische Universität Darmstadt
https://www.ukp.tu-darmstadt.de

1 Summary
A modular, extensible framework to visualize and compare attention mechanisms in (non-factoid) question answering

Non-Factoid Question Answering
• Questions that do not necessarily ask about facts; can often be answered with opinions, experiences, descriptions...
• We search for existing content on the web that can answer the question (e.g. by searching in CQA platforms)

Task: Answer Selection
• Given a question and a set of candidate answers, we rank the candidates for relevancy according to the question
• Attention-based models achieve state-of-the-art results

Challenge
• Understanding strengths and weaknesses of particular attention mechanisms is important
• Researchers usually plot attention weights for a number of predefined Q/A pairs within a dataset
• This is not interactive and makes the direct comparison of different approaches time-consuming

Our Contributions
1. We present a framework for the interactive exploration of different attention-based models
 • By transforming models to end-to-end QA systems
 • Supports one-way-, two-way-, and self-attention
2. Our UI allows comparing different approaches side by side

2 System Architecture

YAML Configuration:
- dataset: data/insuranceQA
- model: model.ap_lstm
- training: training.dynamic
- evaluation: evaluation.default

3 Candidate Retrieval
Approach
• We use ElasticSearch to index all answers of a dataset
• For an input question we query this index to obtain a set of candidate answers

Extensibility
• Our service implementation can easily be extended with new datasets through public interfaces
• We include readers for InsuranceQA and StackExchange

4 Candidate Ranking
Approach
• We re-rank all candidates with (attention-based) NNs
• The results include attention weights for every Q/A pair
 → Question attention can be different for each answer

Extensibility
• The service implementation includes an extensible answer selection framework based on TensorFlow
• All components can freely be swapped and combined (dataset, model, training, evaluation)
• The framework is highly configurable through external YAML files (see the example on the right)

YAML Configuration:
- dataset: data/insuranceQA
- model: model.ap_lstm
- training: training.dynamic
- evaluation: evaluation.default
- data:
 - embeddings: data/glove.6B.100d.txt
 - insuranceQA: data/insuranceQA
 - lowercased: true
- model:
 - lstm_cell_size: 141
 - margin: 0.2
 - trainable_embeddings: true

5 QA-Frontend
Interactive visualization of Q/A attention
Choose between models

Software Release
• The source code of our framework is publicly available on GitHub
• Includes a short documentation and an API reference
https://github.com/UKPLab/acl2017-non-factoid-qa

This work has been supported by the German Research Foundation as part of the QA-EduInf project (grant GU 798/18-1 and grant RI 803/12-1)
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.