An analytic study of how LSTM language models use prior linguistic context. We measure changes in LSTM performance, as a result of ablations applied to contextual features of the input, during evaluation.

Setup
- Perturbations applied only during evaluation.
- Datasets: Penn Treebank (PTB) and Wikitext-2 (Wiki).
- Standard LSTM LM architecture (Merity et al., 2018).
- All results are reported on the development set (to protect the test set).
- Measuring changes in negative log likelihood:

\[
\text{NLL} = -\frac{1}{T} \sum_{i=1}^{T} \log P(w_t | w_{t-1}, \ldots, w_1)
\]

How much context is used?
- Perturbation: guess a context size, delete all prior tokens

LSTM language models can use at least about 200 tokens of context, on average.

Does word order matter?
- Perturbation: shuffle/reverse spans in prior context

Local word order only matters within the most recent sentence, ~20 tokens.

Global word order only matters for the most recent 50 tokens.

Can LSTMs copy words?

Three Categories of Target Words
1. Appear in their own nearby context (within 50 tokens).
2. Appear only in their own long-range context (beyond 50 tokens).

LSTMs can regenerate words seen in nearby context.

Neural Caches (Grave et al., 2017b) help words that can be copied from long-range context, the most.

Implications
- Improve existing models!
- Compare model classes on more than just test set perplexities!
- Can we decouple the data from the models?
 Experiment with different model classes and different languages
- Theoretical justifications???

Code:
https://github.com/urvashik/lm-context-analysis

References

Acknowledgements
We gratefully acknowledge support of the DARPA Communicating with Computers (CwC) program under ARO prime contract no. W911NF15-1-0462 and the NSF via grant IIS-1514268.