AMR Parsing as Graph Prediction with Latent Alignment

Chunchuan Lyu*, Ivan Titov†

*ILCC, School of Informatics, University of Edinburgh
†ILLC, University of Amsterdam

Abstract Meaning Representations

Main Contributions

• Lack of gold alignment -> AMR parsing with a joint probabilistic model for alignment, concept and relation identification.

• Seq2seq model could work well for semantic parsing ? -> our non-autoregressive model achieves the best reported results (+1.4% over previous state of the art).

Sequence tagging does not suffer from exposure bias.

AMR Parsing as Graph Prediction

Joint Training Objective

\[P_{\theta, \phi}(c, R|w) = \sum_{a \in \text{Perm}} P(a) \sum_{c \in \text{Card}} P(c|a, w) P_0(R|a, w, c) \]

Further conditional independence

\[P(c|a, w) \prod_{i=1}^{m} P(c_i|a_i, c_i, c_{i+1}) \prod_{i,j=1}^{m} P(r_{ij}|h_{ai}, c_i, c_{i+1}, c_j) \]

• marginalization is intractable

Model Relaxation

For concept identification model, treat soft alignment as prior

\[\log P_0(c_i|\tilde{a}_i, w) \approx \log \sum_{k=1}^{R} \tilde{a}_i k P_0(c_i|a_i = k, w) \]

For relation identification, weight representation with soft alignment

\[h_{\text{ai}} := \sum_{k=1}^{R} \tilde{a}_i k h_k \]

Recategorization

The opinion of the boy

Archives

Fig. 5 An example of re-categorized AMR

References

Table 1. F1 scores on individual phenomena. X’17 is AMR data; F’16 is IANAR; C’17 is CharTing100K; AM is AM data.

Acknowledgements: We thank Marco Ciaramita, Shay Cohen, Diego Marincich and Wilber Aze for helpful discussions as well as anonymous reviewers for their suggestions. The project was supported by the European Research Council (ERC) StG Broadsign (617069) and the Dutch National Science Foundation (NWO) VENI (639.022.358).

* Contact: chunchuan.lyu@gmail.com