Extracting Relational Facts by an End-to-End Neural Model with Copy Mechanism

Xiangrong Zeng, Daqijian Zeng, Shizhu He, Kang Liu, Jun Zhao

National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Science
Changsha University of Science & Technology

Motivation

- Relational triplets may have overlaps in a sentence.
- We divide the sentences into three types according to triplet overlap degree: Normal, EntityPairOverlap (EPO) and SingleEntityOverlap (SEO).
- Current work mainly concentrate on relation extraction of Normal class.

Methods

- We aim to design a model that could extract triplets from sentences of Normal, EPO and SEO classes.
- We propose an end2end model based on Seq2Seq learning with copy mechanism.
 - The encoder converts a natural language sentence (the source sentence) into a fixed length semantic vector.
 - Then, the decoder reads in this vector and generates triplets directly.
 - To generate a triplet, firstly, the decoder generates the relation.
 - Secondly, by adopting the copy mechanism, the decoder copies the first entity (head entity) from the source sentence.
 - Lastly, the decoder copies the second entity (tail entity) from the source sentence.
- We adopt two different strategies in decoding process:
 - Employing only one unifies decoder (OneDecoder) to generate all triplets
 - Or, applying multiple separated decoders (MultiDecoder) and each of them generating one triplet.

Experiments

- Datasets: NYT and WebNLG
- Baseline: NovelTagging (ACL2017)
- Results of different models

Contribution

- We propose an end2end neural model based on sequence-to-sequence learning with copy mechanism to extract relational facts from sentences, where the entities and relations could be jointly extracted.
- Our model could consider the relational triplet overlap problem through copy mechanism. In our knowledge, the relational triplet overlap problem has never been addressed before.
- We conduct experiments on two public datasets. Experimental results show that our model outperforms the state-of-the-arts with 39.8% and 31.1% improvements respectively.