Bridging Languages Through Images with Deep Partial Canonical Correlation Analysis

GUY ROTMAN ¹, IVAN VULIĆ ² & ROI REICHART ¹

¹ Faculty of Industrial Engineering and Management, Technion, IIT
² Language Technology Lab, University of Cambridge
Motivation
Motivation

- A visual scene can be described in any language

- Imagine that you are sitting in a restaurant in a foreign country and you need a spoon...
Goal

- Find a shared space for textual inputs from several languages
- Utilize mutual images to bridge between the textual inputs

English
A man is sitting at a table holding a spoon

Spanish
Un hombre está sentado en una mesa sujetando una cuchara
Technical Details
Multilingual Word Embeddings

- Vectors in different languages are in different spaces
Multilingual Word Embeddings

- Vectors in different languages are in different spaces
Mapping Two Views To a Shared Space: Canonical Correlation Analysis (CCA)

- CCA (Hotelling, 1936) is a statistical technique for finding linear projections of two random matrices such that their projected columns are maximally correlated.
Mapping Two Views To a Shared Space: Canonical Correlation Analysis (CCA)

• **Objective in matrix form:**

\[
\begin{align*}
\min_{\theta = \{W,V\}} & \quad \frac{1}{N-1} ||W^TX - V^TY||_F^2 \\
\text{Subject to} & \quad W^T\hat{\Sigma}_{xx}W = V^T\hat{\Sigma}_{yy}V = I
\end{align*}
\]

- \(\hat{\Sigma}_{xy} = \frac{1}{N-1}XY^T\), \(\hat{\Sigma}_{xx} = \frac{1}{N-1}XX^T\), \(\hat{\Sigma}_{yy} = \frac{1}{N-1}YY^T\)

- \(X, Y \) have zero mean
Limitations of CCA

- Projection is linear

- Inapplicable for large datasets due to whitening constraints:
 - Hard to compute stochastic estimations of the covariance matrices
 - Objective does not decompose over samples

- Cannot benefit from an additional view (such as images)
Partial CCA (PCCA)

- PCCA (Rao, 1969) is a statistical technique for finding linear maximal correlated projections of two random matrices conditioned on a third variable

\[\max_{\theta = \{W, V\}} \text{Corr} (W^T (X|Z), V^T (Y|Z)) \]

- Z (a visual input) is a mutual variable of X and Y (textual inputs)
- PCCA was not used before in the multilingual multimodal setup
New model - Deep Partial CCA (DPCCA)

- CCA has a deep variant – Deep CCA (Andrew et al., 2013)
New model - Deep Partial CCA (DPCCA)

- CCA has a deep variant — Deep CCA (Andrew et al., 2013)

- Can we develop a deep variant for Partial CCA?

 - Partial CCA suffers from similar limitations to those of CCA

 - A new stochastic optimization algorithm is required
The DPCCA Model
Architecture of Deep Partial CCA (DPCCA) - Variant A

A man is sitting at a table holding a spoon

Un hombre está sentado en una mesa sujetando una cuchara
Architecture of Deep Partial CCA (DPCCA) - Variant B

A man is sitting at a table holding a spoon

Un hombre está sentado en una mesa sujetando una cuchara
Deep Partial CCA (DPCCA)

• (1) learn non-linear representations of X and Y:

$$F(X) = W^T f(X), \quad G(Y) = V^T g(Y)$$

• f and g are two deep neural networks
• W and V are the final projection matrices
Deep Partial CCA (DPCCA)

• (2) perform multivariate linear multiple regressions for \(F(X) \) and \(G(Y) \) on a shared variable \(Z \):

\[
F(X) = \underbrace{AZ}_{\text{explained}} + \underbrace{F(X|Z)}_{\text{residual}}
\]

\[
G(Y) = \underbrace{BZ}_{\text{explained}} + \underbrace{G(Y|Z)}_{\text{residual}}
\]

\[
\min_A \frac{1}{N-1} \left| \left| F(X) - AZ \right| \right|_F^2
\]

\[
\min_B \frac{1}{N-1} \left| \left| G(Y) - BZ \right| \right|_F^2
\]
Deep Partial CCA (DPCCA)

• (2) perform multivariate linear multiple regressions for \(F(X) \) and \(G(Y) \) on a shared variable \(Z \):

\[
F(X) = AZ + F(X|Z)
\]

\[
G(Y) = BZ + G(Y|Z)
\]

\[
\begin{align*}
\min_A & \frac{1}{N-1} ||F(X) - AZ||_F^2 \\
\min_B & \frac{1}{N-1} ||G(Y) - BZ||_F^2
\end{align*}
\]

• (3) compute the residual matrices and their covariances w.r.t. the optimal solutions:

\[
F(X|Z) = F(X) - \hat{A}Z
\]

\[
\hat{\Sigma}_{FF|Z} = \frac{1}{N-1} F(X|Z)F(X|Z)^T
\]

\[
G(Y|Z) = G(Y) - \hat{B}Z
\]

\[
\hat{\Sigma}_{GG|Z} = \frac{1}{N-1} G(Y|Z)G(Y|Z)^T
\]
Deep Partial CCA (DPCCA)

- (4) perform CCA on the residuals:

\[
\min_{\theta = \{W_f, W, V_f, V\}} \frac{1}{N - 1} \| F(X|Z) - G(Y|Z) \|_F^2
\]

Subject to \(\hat{\Sigma}_{FF|Z} = \hat{\Sigma}_{GG|Z} = I \)
Deep Partial CCA (DPCCA) – Optimization

- Optimization is not trivial
Deep Partial CCA (DPCCA) – Optimization

- *Optimization is not trivial*

- *We introduce new stochastic optimization algorithms for our DPCCA variants*

- *Full Pseudocode is given in the paper*
Deep Partial CCA (DPCCA) – Optimization

• *Optimization is not trivial*

• *We introduce new stochastic optimization algorithms for our DPCCA variants*

• *We adopt some key techniques from the Nonlinear Orthogonal Iteration (NOI) algorithm which was suggested for Deep CCA (Wang et al., 2015)*

• *Full Pseudocode is given in the paper*
Experiments and Results
Experimental Setup – Tasks and Datasets

• **First Task:** Cross-lingual image description retrieval

 - **English**

 A man is sitting at a table holding a spoon

 - **Spanish**

 Un hombre está sentado en una mesa sujetando un tenedor

 Un hombre está sentado en una mesa sujetando una cuchara

 Un hombre está sentado en un balcón sujetando una cuchara

• **Dataset:** Multi30k (*Elliott et al.*, 2016)
Experimental Setup – Tasks and Datasets

- **First Task:** Cross-lingual image description retrieval

 English

 A man is sitting at a table holding a spoon

 Spanish

 Un hombre está sentado en una mesa sujetando un tenedor

 Un hombre está sentado en una mesa sujetando una cuchara

 Un hombre está sentado en un balcón sujetando una cuchara

- **Dataset:** *Multi30k* (Elliott et al., 2016)
Experimental Setup – Tasks and Datasets

- **Second Task: Multilingual Word Similarity**

<table>
<thead>
<tr>
<th>English</th>
<th>German</th>
<th>Italian</th>
<th>Russian</th>
</tr>
</thead>
<tbody>
<tr>
<td>inspect-examine</td>
<td>prüfen-überprüfen</td>
<td>inspezionare-esaminare</td>
<td>осматривать-изучать</td>
</tr>
<tr>
<td>easy-flexible</td>
<td>leicht-flexibel</td>
<td>facile-flessibile</td>
<td>покладистый-гибкий</td>
</tr>
<tr>
<td>plane-airport</td>
<td>flugzeug-flughafen</td>
<td>aereo-aeroporto</td>
<td>самолет-аэропорт</td>
</tr>
</tbody>
</table>

- **Dataset: Multilingual Simlex-999 (Leviant and Reichart., 2015)**
New Dataset – Word Image Word (WIW)

- Word pairs in different languages with mutual images

- The new dataset is available at: github.com/rotmanguy/DPCCA
Experimental Setup - Baselines

- *Linear and deep CCA-based models:*
 - *Probabilistic Partial CCA (PPCCA) (Mukuta, 2014) – T*
 - *Nonparametric CCA (NCCA) (Michaeli et al., 2016) - T*
 - *Generalized CCA (GCCA) (Horst, 1961) – TI*
 - *Deep CCA (DCCA) with various optimization algorithms – T*
 - *Deep CCA Autoencoder (DCCAE) (Wang et al., 2015) – T*

Text – T, Text + Images – TI
Experimental Setup - Baselines

- **Linear and deep CCA-based models:**
 - Probabilistic Partial CCA (PPCCA) (Mukuta, 2014) – T
 - Nonparametric CCA (NCCA) (Michaeli et al., 2016) - T
 - Generalized CCA (GCCA) (Horst, 1961) – TI
 - Deep CCA (DCCA) with various optimization algorithms – T
 - Deep CCA Autoencoder (DCCAE) (Wang et al., 2015) – T

- **Other related works:**
 - Bridge Correlational Networks (BCN) (Rajendran et al., 2016) – TI
 - Image Pivoting (Gella et al., 2017) – TI

Text – T, Text + Images – TI
Main Results

• *PCCA* gets very good results, outperforming NN based methods and linear methods (including CCA, Image Pivoting, BCN ...)

• *DPCCA* is the best model, outperforming all baseline

• *Training with images improves performance on words that are more abstract, such as adjectives and verbs*
Cross-lingual Image Description Retrieval

<table>
<thead>
<tr>
<th>Model</th>
<th>English to German</th>
<th>German to English</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPCCA Variant A</td>
<td>83.6%</td>
<td>82.7%</td>
</tr>
<tr>
<td>DPCCA Variant B</td>
<td>84.8%</td>
<td>83.9%</td>
</tr>
<tr>
<td>DPCCA Variant B + DCCA NOI (Concatenation)</td>
<td>86.3%</td>
<td>83.7%</td>
</tr>
<tr>
<td>DCCA NOI</td>
<td>84.9%</td>
<td>83.0%</td>
</tr>
<tr>
<td>IMG PIVOTING</td>
<td>78.9%</td>
<td>78.1%</td>
</tr>
<tr>
<td>BCN</td>
<td>62.8%</td>
<td>62.9%</td>
</tr>
<tr>
<td>PCCA</td>
<td>82.4%</td>
<td>78.7%</td>
</tr>
<tr>
<td>CCA</td>
<td>80.3%</td>
<td>75.4%</td>
</tr>
<tr>
<td>GCCA</td>
<td>74.2%</td>
<td>74.3%</td>
</tr>
</tbody>
</table>

- Results are reported on BLEU + 1
Multilingual Word Similarity

<table>
<thead>
<tr>
<th>Model</th>
<th>EN - ADJ</th>
<th>EN - Verbs</th>
<th>EN - Nouns</th>
<th>DE - ADJ</th>
<th>DE - Verbs</th>
<th>DE - Nouns</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPCCA Variant A</td>
<td>64.0%</td>
<td>31.1%</td>
<td>36.9%</td>
<td>43.0%</td>
<td>32.1%</td>
<td>40.4%</td>
</tr>
<tr>
<td>DPCCA Variant B</td>
<td>62.6%</td>
<td>31.6%</td>
<td>38.2%</td>
<td>46.2%</td>
<td>31.9%</td>
<td>39.9%</td>
</tr>
<tr>
<td>DCCA NOI</td>
<td>61.1%</td>
<td>30.8%</td>
<td>36.1%</td>
<td>44.1%</td>
<td>29.7%</td>
<td>39.8%</td>
</tr>
<tr>
<td>PCCA</td>
<td>61.4%</td>
<td>29.6%</td>
<td>34.0%</td>
<td>30.5%</td>
<td>14.3%</td>
<td>34.0%</td>
</tr>
<tr>
<td>CCA</td>
<td>55.7%</td>
<td>29.7%</td>
<td>32.1%</td>
<td>28.4%</td>
<td>15.7%</td>
<td>34.6%</td>
</tr>
<tr>
<td>GCCA</td>
<td>63.6%</td>
<td>28.0%</td>
<td>37.8%</td>
<td>44.6%</td>
<td>27.7%</td>
<td>39.8%</td>
</tr>
</tbody>
</table>

- Results are reported on Spearman's correlation coefficient
Summary

• Goal: Learning a shared bilingual space for textual inputs
Summary

• **Goal:** Learning a shared bilingual space for textual inputs

• **Our Contributions:**
 • **Method:** Adding mutual visual information to the learning process
 • **Model:** Applying PCCA to our settings, and introducing its deep variants
 • **Optimization:** New optimization algorithm for DPCCA
 • **Results:** Improvements over previous work
 • **New Dataset:** Word Image Word (WIW)
Future Work

- Expanding DPCCA to support more than two languages
- Exploiting the internal structure of images and sentences
Thank you!

- Code and data are available at:

 github.com/rotmanguy/DPCCA