Stack-Pointer Networks for Dependency Parsing

Xuezhe Ma1, Zecong Hu2, Jingzhou Liu1, Nanyun Peng3, Graham Neubig1 and Eduard Hovy1

1Carnegie Mellon University 2Tsinghua University 3University of Southern California

https://github.com/XuezheMax/NeuroNLP2
$\text{But there were no buyers}$
Transition-based Parsing

• Process the input *sequentially* in order

• Use *actions* that build up a tree

• Choose which actions to apply with a *classifier*
Example: Arc-standard Parsing
[Yamada+ 2003, Nivre 2004]

- **Order:** Left-to-right
- **Actions:** Shift, reduce-right, reduce-left

```
ROOT | saw a girl ∅
```

- **Classifier:**
 - Support vector machines [Nivre+ 2004]
 - Feed-forward neural networks [Chen+ 2014]
 - Recurrent neural networks [Dyer+ 2015]
Our Proposal: Stack-pointer Networks (StackPtr)

- **Order:** Top-down, depth-first
- **Actions:** "Point" to the next word to choose as a child
- **Model:** A neural network, based on "pointer networks"
- **Advantages:**
 - Top-down parsing maintains a global view of the sentence
 - High accuracy
 - Can maintain full history, low asymptotic running time (c.f. graph-based)
Background: Pointer Network [Vinyals+ 2015]

- Output sequence with elements that are discrete tokens corresponding to positions in an input sequence

- Use attention as a pointer to select a member of the input sequence as the output

\[e_t^i = \text{score}(h_t, s_i) \]
\[a_t = \text{softmax}(e_t) \]

\(s \) and \(h \) are the hidden states of encoder and decoder, and \(\text{score()} \) is the attention scoring function, e.g. bi-affine attention [Luong+ 2015; Dozat+ 2017]
Variable Definitions

\[s = \{s_1, \ldots, s_n\}: \text{hidden states of encoder} \]

\[s_1 \leftrightarrow s_2 \leftrightarrow s_3 \leftrightarrow s_4 \]

\[h = \{h_1, \ldots, h_n\}: \text{hidden states of decoder} \]

\[h_1 \leftrightarrow h_2 \leftrightarrow h_3 \leftrightarrow h_4 \]

\[x = \{w_1, \ldots, w_n\}: \text{an input sentence} \]

\[w_1 \leftrightarrow w_2 \leftrightarrow w_3 \leftrightarrow w_4 \]

\[y = \{p_1, \ldots, p_n\}: \text{a sequence of paths, each of which is a sequence of words from root to a leaf} \]
Transition System

• Two data structures
 - List (α): of words whose head has not been selected
 - Stack (σ): of partially processed head words whose children have not been fully selected

• Stack σ is initialized with the root symbol $\$

• At each decoding step t
 - receive the top element of stack σ as head word w_h, and generate the hidden state h_t
 - compute the attention vector a^t using h_t and encoder hidden states s
 - generate an arc: choose a specific word (w_c) from α as the child of w_h, remove w_c from α and push it onto σ
 - complete a head: pop w_h out of σ
Features for the Classifier

- Utilize higher-order information at each step of the top-down decoding procedure

- **Sibling** and **Grandchild** structures
 - proven beneficial for parsing performance (McDonald and Pereira 2006; Koo and Collins 2010)

\[
\beta_t = s_h + s_g + s_s
\]
Example

$ \text{But there were no buyers}$
Example

$ \text{But there were no buyers}$

$ \text{But there were no buyers}$
Example

$\text{But} \quad \text{there} \quad \text{were} \quad \text{no} \quad \text{buyers}$
Example

$\quad \text{But} \quad \text{there} \quad \text{were} \quad \text{no} \quad \text{buyers}$

$s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow s_5 \rightarrow s_6$

$\quad \text{$s_7$}$
But there were no buyers

$s \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \rightarrow s_5 \rightarrow s_6$

$0 + s_1 + 0$

s
But there were no buyers
But there were no buyers
Example

$\text{But there were no buyers}$

Example 17
Example

$\text{But there were no buyers}$
But there were no buyers
Example

But there were no buyers
Example

$\text{But there were no buyers}$
Example

$\text{But there were no buyers}$
Learning StackPtr

- **Maximum likelihood**
- **Factorize into sequence of top-down paths**

\[
P_\theta(y|x) = \prod_{i=1}^{k} P_\theta(p_i|p_{<i}, x)
= \prod_{i=1}^{k} \prod_{j=1}^{l_i} P_\theta(c_{i,j}|c_{i,<j}, p_{<i}, x),
\]

- **Pre-defined inside-out order** for children of each head word
 - Enables parser to utilize **higher-order sibling** information
- **Train separate classifier for dependency label prediction**
 - Use head word and child information [Dozat+ 2017]
Experiment 1: Main Results & Analysis

- **Datasets:**
 - English PTB, Chinese PTB, German CoNLL 2009 shared task

- **Parsing models for comparison**
 - Baseline: Deep Biaffine (BiAF) parser (Dozat et al., 2017), augmented with character-level information
 - Four versions of StackPtr:
 - **Org**: utilizes only head word information
 - **+gpar**: augment Org with grandparent information
 - **+sib**: augment Org with sibling information
 - **Full**: include all the three information

- **Evaluation metrics**
 - Unlabeled Attachment Score (UAS), Labeled Attachment Score (LAS), Unlabeled Complete Match (UCM), Labeled Complete Match (LCM), Root Accuracy (RA)
Main Results
StackPtr tends to perform better on shorter sentences, consistent with transition-based/graph-based comparison in McDonald and Nivre (2011).
The gap between Stack-Ptr and BiAF is marginal, graph-based BiAF still performs better for longer arcs.
Different from McDonald and Nivre (2011), StackPtr and BiAf similar regardless of root distance
Effect of POS Embedding

Gold: Parser with gold-standard POS tags
Pred: Parser with predicted POS tags (97.3% accuracy)
None: Parser without POS tags

UAS and LAS scores:
- Gold: 95.75%
- Pred: 94.25%
- None: 93.5%
Experiment 2: Universal Dependency Treebanks

• **Datasets:**
 - Universal Dependency Treebanks (V2.2)
 - 12 languages

• **Languages:** Bulgarian, Catalan, Czech, Dutch, English, French, German, Italian, Norwegian, Romanian, Russian and Spanish

• **Note:** we also ran experiments on 14 CoNLL Treebanks. (see the paper for details)
LAS on UD Treebanks

BiAF

StackPtr

LAS

bg ca cs de en es fr it nl no ro ru

88 89.5 91 91.5 92.5 92.5 94
Conclusion & Future Work

- **Stack-Pointer network for dependency parsing**
 - A transition-based neural network architecture
 - Top-down, depth-first decoding procedure
 - State-of-the-art performance on 21 out of 29 treebanks

- **Future Work**
 - Learn an optimal order for the children of head words, instead of using a pre-defined fixed order
 - End-to-end training
Thank you!

Questions?

Our code is published at: https://github.com/XuezheMax/NeuroNLP2
Model Details

• Encoder
 - Bi-directional LSTM-CNN (Chiu and Nichols 2016; Ma and Hovy 2016)
 - Three input embeddings: word, character and POS
 - CNN encodes character-level information
 - 3-layer LSTM with recurrent dropout (Gal et al., 2016)

• Decoder
 - Uni-directional LSTM
 - Use encoder hidden states as input instead of word embeddings
 - 1-layer LSTM with recurrent dropout