Weakly Supervised Semantic Parsing with Abstract Examples

Omer Goldman, Veronica Latcinnik, Udi Naveh, Amir Globerson, Jonathan Berant
Tel Aviv University
ACL, July 2018
Semantic Parsing

What is the capital of the largest US state?

\[\text{CapitalOf}.\text{argmax}(\text{Type}.\text{State} \cap \text{LocatedIn}.\text{US}, \text{Population}) \]

Sacramento

KB:
Training with Full Supervision

- Training examples:

\[
x: \quad y: \text{CapitalOf.\arg\max_{\text{Type}} \text{State} \cap \text{LocatedIn.US, Population}}
\]

Introduction ➤ Semantic parser ➤ Abstract examples ➤ Results ➤ Conclusions
Training with Weak Supervision

Training examples:

\[x: \]
\[y: Sacramento \]
Problems with Weak Supervision

- Exponential search space

![Diagram showing exponential search space with examples: 3+3*15, 1, 5+30, 2-2, 4+60/3, with all resulting in incorrect decoding.](image)
Problems with Weak Supervision

- Spurious programs (Pasupat and Liang, 2016; Guu et al., 2017)

![Diagram showing decoding process with examples]

Correct program: 2×2
CNLVR (Suhr et al., 2017)

\[I : \]

\[k : [[[x_{-}loc: \ldots, color: 'Black', type: 'square', x_{-}loc: \ldots, size: 20}, \ldots]]] \]

\[x : 'There is a small yellow item not touching any wall' \]

\[y : True \]
There is a blue square

\[
\exists (\text{filter}(\text{ALL_ITEMS}, \lambda x. \text{IsBlue}(x) \land \text{IsSquare}(x)))
\]

Binary! True

50% spurious

KB:
Insight

There is exactly one black circle not touching the edge

- Equal(1, (filter(ALL_ITEMS, λx. IsBlack(x) ∩ IsCircle(x) ∩ ¬IsTouchingWall(x)))
- GreaterEqual(3, (filter(ALL_ITEMS, λx. IsBlue(x) ∩ IsTriangle(x) ∩ ¬IsTouchingWall(x)))
- GreaterEqual(1, (filter(ALL_ITEMS, λx. IsBlue(x) ∩ IsTriangle(x) ∩ ¬IsTouchingWall(x)))
- LessEqual(3, (filter(ALL_ITEMS, λx. IsYellow(x) ∩ IsRectangle(x) ∩ ¬IsTouchingWall(x)))
 Contributions

There is a yellow circle

exist(filter(ALL_ITEMS, \(\lambda x. \text{IsYellow}(x) \land \text{IsCircle}(x) \)))

There is a C–COLOR C–SHAPE

exist(filter(ALL_ITEMS, \(\lambda x. \text{IsC-COLOR}(x) \land \text{IsC-SHAPE}(x) \)))

Data augmentation helps search

Abstract cache tackles spuriousness

CNLVR improvement:

67.8 \rightarrow 82.5
Semantic Parsing
Logical Program

\[x: \]

\[z: \text{exist}(\text{filter}(\text{ALL_BOXES}, \lambda x. \text{ge}(3, \text{count}(\text{filter}(x, \lambda y. \text{IsBlue}(y)))))) \]
Model

Training maximizes log-likelihood of correct programs

+ discriminative re-ranker
Abstract Examples
Abstraction

There is a yellow circle
exist(filter(ALL_ITEMS, λ. IsYellow(x) ∧ IsCircle(x)))

There is a blue square
exist(filter(ALL_ITEMS, λ. IsBlue(x) ∧ IsRectangle(x)))

<table>
<thead>
<tr>
<th>Utterance</th>
<th>Program</th>
<th>Cluster</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>"yellow"</td>
<td>IsYellow</td>
<td>C-Color</td>
<td>3</td>
</tr>
<tr>
<td>"big"</td>
<td>IsBig</td>
<td>C-Size</td>
<td>3</td>
</tr>
<tr>
<td>"square"</td>
<td>IsSquare</td>
<td>C-Shape</td>
<td>4</td>
</tr>
<tr>
<td>"3"</td>
<td>3</td>
<td>C-Num</td>
<td>2</td>
</tr>
<tr>
<td>"exactly"</td>
<td>EqualInt</td>
<td>C-QuantMod</td>
<td>5</td>
</tr>
<tr>
<td>"top"</td>
<td>Side.Top</td>
<td>C-Location</td>
<td>2</td>
</tr>
<tr>
<td>"above"</td>
<td>GetAbove</td>
<td>C-SpaceRel</td>
<td>6</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

There is a \(C – \text{COLOR} \& C – \text{SHAPE}\)
exist(filter(ALL_ITEMS, λ. IsC-COLOR(x) ∧ IsC-SHAPE(x)))
Analysis

3163 CNLVR sentences
 • There is............
 • One of the.......
 • There are........
 • Exactly two.....
 • There is........
 • In two of.......
 • There is........
 • There are......
 • There is........
 • One square.....
 • There is........
 • One of the......
 • There are......
 • There is........
 • Two towers.....
 • There are......
 • There is........
 • One circle......
 • There is........
 • Last one........

~1300 abstract sentences
 • There is............
 • There are........
 • C-Num of..........
 • There is.........
 • One tower.........
 • There are........
 • C-Num C-Shape...
 • There is............
 • C-Num towers....
 • Another last........

~150 abstract sentences cover 50% of CNLVR.
Abstraction

- Data augmentation
- Abstract cache
There is a yellow circle

There is a blue rectangle
exist(filter(ALL_ITEMS, λx. IsBlue(x) ∧ IsSquare(x)))

There is a yellow triangle
exist(filter(ALL_ITEMS, λx. IsYellow(x) ∧ IsTriangle(x)))

There is a black circle
exist(filter(ALL_ITEMS, λx. IsBlack(x) ∧ IsCircle(x)))

There is a C – COLOR C – SHAPE
exist(filter(ALL_ITEMS, λx. IsC-COLOR(x) ∧ IsC-SHAPE(x)))
Training Procedure

~100 Abstract examples
(abs. sent., abs. prog.)

~6000 Instantiated examples
(sentence, program)

3163 CNLVR training examples
(sentence, answer)

Supervised model

Weakly-supervised model

Introduction ➞ Semantic parser ➞ Abstract examples ➞ Results ➞ Conclusions
Abstract Cache

“There is a yellow triangle”

abstraction

decoding

“There is a C-Color C-Shape”

retrieval

Beam:

\[
\begin{array}{cccccc}
t = 0 & t = 1 & t = 2 & t = 3 & t = 4 & t = 5 \\
\begin{aligned}
\text{Exist} & \quad \text{Filter} & \quad \text{ALL_ITEMS} & \quad \lambda x.\text{And} & \quad \text{Count} & \quad \text{Filter} \\
\text{Exist} & \quad \text{Filter} & \quad \text{ALL_ITEMS} & \quad \lambda x.\text{And} & \quad \text{IsYellow} & \quad \text{IsYellow} \\
\text{GreaterThan} & \quad 1 & \quad \text{Count} & \quad \text{Filter} & \quad \text{ALL_ITEMS} & \quad \lambda x.\text{Equal} \\
\text{Equal} & \quad 2 & \quad \text{Count} & \quad \text{Filter} & \quad \text{ALL_ITEMS} & \quad \lambda x.\text{Equal} \\
\text{Exist} & \quad \text{Filter} & \quad \text{ALL_ITEMS} & \quad \lambda x.\text{And} & \quad \text{IsYellow} & \quad \text{IsTriangle} \\
\text{GreaterThan} & \quad 1 & \quad \text{Count} & \quad \text{Filter} & \quad \text{ALL_ITEMS} & \quad \lambda x.\text{And} \\
\end{aligned}
\end{array}
\]

Exist(\text{Filter}(\text{ALL_ITEMS}, \lambda x.\text{And}(\text{IsC_COLOR}(x), \text{IsC_SHAPE}(x)))) 95%

GreaterThan(1, \text{count}(\text{Filter}(\text{ALL_ITEMS}, \lambda x.\text{And}(\text{IsC_COLOR}(x), \text{IsC_SHAPE}(x))))) 90%

Exist(\text{Filter}(\text{ALL_ITEMS}, \lambda x.\text{IsCOLOR}(x))) 30%
Reward Tying

Introduction

Semantic parser

Abstract examples

Results

Conclusions

50% spurious

\[I : \]

\[k : \text{[[\{y-loc: \ldots, color: 'Black', type: 'square', x-loc: \ldots, size: 20}, \ldots\}]]} \]

\[x : \text{There is a small yellow item not touching any wall} \]

\[y : \text{True} \]
Reward Tying

\[z : \text{Exist}(\text{Filter(ALL_ITEMS, } \lambda x. \text{And(And(IsYellow}(x), \text{IsSmall}(x)), \text{Not(IsTouchingWall}(x, \text{Side.Any})))))) \]
Results
Models

- Majority label (True)
- Max Entropy classifier on extracted features
- Supervised trained model (+Re-ranker)
- Weakly supervised trained model (+Re-ranker)

Baselines (Suhr et al., 2017)
Results - Public test set

<table>
<thead>
<tr>
<th>Method</th>
<th>Test-P Accuracy</th>
<th>Test-P Consistency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Majority</td>
<td>56.2</td>
<td></td>
</tr>
<tr>
<td>MaxEnt</td>
<td>67.7</td>
<td></td>
</tr>
<tr>
<td>Sup.</td>
<td>66.9</td>
<td></td>
</tr>
<tr>
<td>Sup.+Rerank</td>
<td>76.6</td>
<td>51.8</td>
</tr>
<tr>
<td>W.Sup.</td>
<td>81.7</td>
<td>60.1</td>
</tr>
<tr>
<td>W.Sup.+Rerank</td>
<td>84</td>
<td>65</td>
</tr>
</tbody>
</table>

Test-P Accuracy and Test-P Consistency for different methods on the public test set.
Ablations

- No data augmentation
- Abstract weakly supervised parser
Ablations

- Abstraction
- Data augment.
- Beam cache
- W.Sup.+Rerank

- Dev Accuracy
- Dev Consistency

Data augmentation addition

Cache addition

Introduction Semantic parser Abstract examples Results Conclusions
Conclusions
Conclusions

Similar ideas in: Dong and Lapata (2018) and Zhang et al. (2017)

Automation would be useful
Thank you

https://github.com/udiNaveh/nlvr_tau_nlp_final_proj