Improving a Neural Semantic Parser by Counterfactual Learning from Human Bandit Feedback

Carolin Lawrence, Stefan Riezler

Heidelberg University
Institute for Computational Linguistics

July 17, 2018
Situation Overview

- Situation: deployed system (e.g. QA, MT ...)
- Goal: improve system using human feedback
- Plan: create a log D_{log} of user-system interactions & improve system offline (safety)

Here: Improve a Neural Semantic Parser
Contrast to Previous Approaches

- **Introduction**
- **Task**
- **Objectives**
- **Experiments**
- **Conclusion**

Diagram Description
- **Question x**
- **Parser** predicts parses $y_1, ..., y_s$
- **Database**
- **Comparison**
- **Answers** $a_1, ..., a_s$
- **Rewards** $r_1, ..., r_s$
- **Required data**

The diagram illustrates the flow of data and predictions in a contrast to previous approaches, highlighting the interaction between the parser, database, and comparison stages.
Our Approach

Parser

Database

answer a

User Feedback

r

parse y

predict

(question x)

(required data)

for 1...n

Parser

(log)

(x, y, r)

(train)
Our Approach

- No supervision: given an input, the gold output is unknown
- Bandit: feedback is given for only one system output
- Bias: log \mathcal{D} is biased to the decisions of the deployed system

Solution: Counterfactual / Off-policy Reinforcement Learning
Task
A natural language interface to OpenStreetMap

- OpenStreetMap (OSM): geographical database
- **NLmaps v2**: extension of the previous corpus, now totalling 28,609 question-parse pairs
A natural language interface to OpenStreetMap

- example question: “How many hotels are there in Paris?”
 Answer: 951
- correctness of answers are difficult to judge
 → judge parses by making them human-understandable
- feedback collection setup:
 1. automatically convert a parse to a set of statements
 2. humans judge the statements
Example: Feedback Formula

Example Query:

```sql
query(around(center(area(keyval('name','Paris')), nwr(keyval('name','Place de la République'))), search(nwr(keyval('amenity','parking'))), maxdist(WALKING_DIST)), qtype(findkey('name')))
```
Objectives
Counterfactual Learning

Resources

collected log $D_{log} = \{(x_t, y_t, \delta_t)\}_{t=1}^n$ with

- x_t: input
- y_t: most likely output of deployed system π_0
- $\delta_t \in [-1, 0]$: loss (i.e. negative reward) received from user

Deterministic Propensity Matching (DPM)

- minimize the expected risk for a target policy π_w

\[
\hat{R}_{DPM}(\pi_w) = \frac{1}{n} \sum_{t=1}^n \delta_t \pi_w(y_t|x_t)
\]

- improve π_w using (stochastic) gradient descent
- high variance \rightarrow use multiplicative control variate
Multiplicative Control Variate

- for random variables X and Y, with \bar{Y} the expectation of Y:

$$\mathbb{E}[X] = \mathbb{E}[\frac{X}{Y}] \cdot \bar{Y}$$

\rightarrow RHS has lower variance if Y positively correlates with X

DPM with Reweighting (DPM+R)

$$\hat{R}_{\text{DPM}+\text{R}}(\pi_w) = \frac{1}{n} \sum_{t=1}^{n} \delta_t \pi_w(y_t|x_t) \cdot \frac{1}{n} \sum_{t=1}^{n} \pi_w(y_t|x_t) \cdot 1$$

- reduces variance but introduces a bias of order $O(\frac{1}{n})$ that decreases as n increases

\rightarrow n should be as large as possible

- Problem: in stochastic minibatch learning, n is too small
One-Step Late (OSL) Reweighting

Perform gradient descent updates & reweighting asynchronously

- evaluate reweight sum R on the entire log of size n using parameters w'
- update using minibatches of size m, $m \ll n$
- periodically update R

\rightarrow retains all desirable properties

DPM+OSL

$$\hat{R}_{DPM+OSL}(\pi_w) = \frac{1}{m} \frac{\sum_{t=1}^{m} \delta_t \pi_w(y_t|x_t)}{\frac{1}{n} \sum_{t=1}^{n} \pi_{w'}(y_t|x_t)}$$
Token-Level Feedback

\[\hat{R}_{DPM+T}(\pi_w) = \frac{1}{n} \sum_{t=1}^{n} \left(\prod_{j=1}^{\|y\|} \delta_j \pi_w(y_j|x_t) \right) \]

\[\hat{R}_{DPM+T+OSL}(\pi_w) = \frac{\frac{1}{m} \sum_{t=1}^{m} \left(\prod_{j=1}^{\|y\|} \delta_j \pi_w(y_j|x_t) \right)}{\frac{1}{n} \sum_{t=1}^{n} \pi_w'(y_t|x_t)} \]
Experiments
Experimental Setup

- sequence-to-sequence neural network Nematus
- deployed system: pre-trained on 2k question-parse pairs
- feedback collection:
 1. humans judged 1k system outputs
 - average time to judge a parse: 16.4s
 - most parses (>70%) judged in <10s
 2. simulated feedback for 23k system outputs
 - token-wise comparison to gold parse
- bandit-to-supervised conversion (B2S): all instances in log with reward 1 are used as supervised training
Experimental Results

![Bar Chart]

- **Human Feedback (1k)**
 - B2S: +0.34
 - DPM+T+OSL: +0.99

- **Large-Scale Simulated Feedback (23k)**
 - B2S: +5.77
 - DPM+T+OSL: +6.96
Take Away

Counterfactual Learning
- safely improve a system by collecting interaction logs
- applicable to any task if the underlying model is differentiable
- DPM+OSL: new objective for stochastic minibatch learning

Improving a Semantic Parser
- collect feedback by making parses human-understandable
- judging a parse is often easier & faster than formulating a parse or answer

NLmaps v2
- large question-parse corpus for QA in the geographical domain

Future Work
- integrate feedback form in the online NL interface to OSM