Introduction

Background
- Research on distributed word representations is focused on widely-used languages such as English. Although the same methods can be used for other languages, language-specific knowledge can enhance the accuracy and richness of word vector representations.
- Despite their effectiveness in capturing syntactic features from subword features of diverse languages, decomposing a word into a set of n-grams and learning n-gram vectors does not consider the unique linguistic structures of various languages.

Contribution
- Our first contribution is the method to decompose the words into both character-level units and jamo-level units and train the subword vectors through the Skip-Gram model.
- Our second major contribution is the Korean evaluation datasets for word similarity and analogy tasks, a translation of the WS-353 with annotations by 14 Korean native speakers, and 10,000 items for semantic and syntactic analogies, developed with Korean linguistic expertise.
- Using these datasets, we show that our model improves performance over other baseline methods without relying on external resources for word decomposition.

Experiments

Dataset
- **Wikipedia**: 43.4M words, 4.3M sentences, 299,528 unique words.
- **Online News**: 47.1M words, 282,955 unique words.
- **Sejong Corpus**: 31.4M words, 4.2M sentences, 231,332 unique words.
- **Total**: 121.9M unique words.

- We aggregate three sources to make the corpus containing 0.12 billion word tokens with 0.6 million unique words.
- Our model and all of the comparison models for training word vectors are trained over the collected corpus.

Evaluation Tasks

1) **Word Similarity & Analogy**
- We develop the evaluation datasets.
- Similarity: Spearman’s correlation coefficient between the human judgment and model’s cosine similarity of word vectors is reported.
- Analogy: Rank-based measures may not be an appropriate measure since the total number of unique n-grams/words over the same corpus largely differ from each other. For fair comparison, cosine distances between the vector a+b-c and d of each categories are reported.

2) **Sentiment Analysis**
- Given a sequence of words, a trained classifier should predict the binary sentiment from the inputs while maintaining the input word vectors fixed.
- Based on part of the Naver Sentiment Corpus, single layer RNN is trained as a classifier for the task.

Subword-level Word Vectors for Korean

Decomposition of Korean Words
- **Jamos** have names that reflect the position in a character: 1) chosung (syllabic onset), 2) jaosung (syllabic nucleus), 3) jongsung (syllabic coda)
- Add empty jongsung symbol e such that a character always has 3 jamos.
- Add start/end symbol / in the sequence.

Extracting n-grams for jamo sequence
- Character-level n-grams, G_C: (c, l), (c, l, m), (c, l, m, e, l, e, >)
- Inter-character jamo-level n-grams, G_J: (c, l, m), (c, l, m, e, l, e, >)

Subword Information Skip-Gram (SISG, a.k.a FastText)
- Constructing word vector from subword vectors: \[\sum_{n=1}^{5} \frac{1}{\text{score}(v_{n,k,v_n,v_{n+1}})} \]
- SISG Binary Logistic Loss: \[\log(1 + \exp(-z_n)) \]
- Scoring Function: \[\frac{\text{score}(v_{n,k,v_n,v_{n+1}})}{\text{score}(v_{n,k,v_n,v_{n+1}}) + \text{score}(v_{n,k,v_n,v_{n+1}})} \]

Developing Evaluations Sets

Word Similarity (WS-353) for Korean
- 2 native speakers translated the original item pairs.
- 14 other native speakers annotated similarity scores of the pairs.
- Correlation between the original scores and the annotated scores of the translated pairs is 0.82.

Word Anomaly for Korean
- **Semantic Features (5,000 items)**
 - Capital-Country: 영국[UK], 러시아[Russia], 미국[USA]
 - Male-Female: 왕자[prince], 공주[princess], 신사[gentleman], 속녀[ladies]
 - Name-Nationality: 간디[Gandhi], 안도지안[andiozian], 잭슨[Lincoln], 미국[USA]
 - Country-Language: 아르헨티나[Argentina], 스페인[Spanish] = 영어[English]
 - Miscellaneous: 개구리[Frog], 물복[adapole], 말[horse], 말[horse]

- **Syntactic Features (5,000 items)**
 - Case: 고수[Professor], 교수[Professor] + case가[case가], 졌저[sooker], 졌저[sooker] + case가[case가]
 - Tenure: 쌓들[Chief], 쌓들[Chief] + 도거[come] + 도거[come] + 도거[come]
 - Voice: 쌓들[Chief], 쌓들[Chief] + 도거[come], 쌓들[Chief] + 도거[come], 쌓들[Chief] + 도거[come]

- Publicly available at: https://github.com/SungjoonPark/KoreanWordVectors

Results

Word Similarity

| Semantic | Capt | Gend | Name | Lang | Misc | Syntactic | Case | Tense | Voice | Form | Hon
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>0.460</td>
<td>0.551</td>
<td>0.537</td>
<td>0.435</td>
<td>0.574</td>
<td>0.521</td>
<td>0.597</td>
<td>0.594</td>
<td>0.685</td>
<td>0.634</td>
<td></td>
</tr>
<tr>
<td>SISG(ch)</td>
<td>0.469</td>
<td>0.554</td>
<td>0.554</td>
<td>0.439</td>
<td>0.614</td>
<td>0.422</td>
<td>0.559</td>
<td>0.569</td>
<td>0.537</td>
<td>0.568</td>
<td></td>
</tr>
<tr>
<td>SISG(1m)</td>
<td>0.424</td>
<td>0.515</td>
<td>0.574</td>
<td>0.362</td>
<td>0.565</td>
<td>0.231</td>
<td>0.523</td>
<td>0.434</td>
<td>0.537</td>
<td>0.367</td>
<td></td>
</tr>
<tr>
<td>SISG(4+4m)</td>
<td>0.431</td>
<td>0.504</td>
<td>0.570</td>
<td>0.361</td>
<td>0.556</td>
<td>0.212</td>
<td>0.415</td>
<td>0.504</td>
<td>0.501</td>
<td>0.364</td>
<td></td>
</tr>
<tr>
<td>SISG(1m+4m)</td>
<td>0.425</td>
<td>0.509</td>
<td>0.573</td>
<td>0.394</td>
<td>0.544</td>
<td>0.210</td>
<td>0.414</td>
<td>0.426</td>
<td>0.507</td>
<td>0.367</td>
<td></td>
</tr>
</tbody>
</table>

Sentence Analysis

<table>
<thead>
<tr>
<th>Acc. (%)</th>
<th>Prec.</th>
<th>Rec.</th>
<th>F1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SG</td>
<td>76.15</td>
<td>0.734</td>
<td>76.02</td>
</tr>
<tr>
<td>SISG(ch)</td>
<td>76.26</td>
<td>0.744</td>
<td>74.74</td>
</tr>
<tr>
<td>SISG(1m)</td>
<td>76.53</td>
<td>0.790</td>
<td>77.01</td>
</tr>
<tr>
<td>SISG(4+4m)</td>
<td>76.28</td>
<td>0.755</td>
<td>77.76</td>
</tr>
<tr>
<td>SISG(1m+4m)</td>
<td>76.54</td>
<td>0.795</td>
<td>79.75</td>
</tr>
</tbody>
</table>

Effect of n in n-grams

<table>
<thead>
<tr>
<th># of chars</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>all</th>
</tr>
</thead>
<tbody>
<tr>
<td># of jamos</td>
<td>2-4</td>
<td>0.960</td>
<td>0.655</td>
<td>0.659</td>
</tr>
<tr>
<td>3-4</td>
<td>0.960</td>
<td>0.655</td>
<td>0.652</td>
<td>0.660</td>
</tr>
<tr>
<td>3-6</td>
<td>0.677</td>
<td>0.672</td>
<td>0.677</td>
<td>0.675</td>
</tr>
<tr>
<td>3-6</td>
<td>0.960</td>
<td>0.663</td>
<td>0.694</td>
<td>0.669</td>
</tr>
</tbody>
</table>

Conclusion and Discussion
- We demonstrated the effectiveness of the jamo- and character-level Korean word vectors in capturing the semantic and syntactic information by evaluating these vectors with newly developed word similarity and word analogy tasks.
- We plan to apply these vectors for various neural network based NLP models, and apply the same idea to other syntactic tasks such as POS tagging and parsing.

Acknowledgement
This work was supported by Institute for Information & Communications Technology Promotion (IITP) grant funded by the Korea government (MSIT) (No.2017-0-01778), Development of Explainable Human-level Deep Machine Learning Inference Framework.