Neural Factor Graph Models for Cross-lingual Morphological Tagging

Chaitanya Malaviya, Matthew R. Gormley, Graham Neubig

Motivation

- **Morphological Tagging**
 - Baseline Model (Cotterell and Heigold, 2017):
 - BiLSTM model with prediction over tagsets.
 - Word representations obtained from char BiLSTM.

- **Problems** with Baseline Model:
 - Output space: All tagsets seen in training data.
 - Tagsets don’t exactly overlap between HRL & LRL.

- Proposed Model: Hybrid Graphical Model + NN architecture with following advantages:
 - Predict tags individually; generates arbitrary sets.
 - Model inter-time tag dependencies.
 - Model pairwise dependencies between tags.

Model Architecture

\[p(y|x) = \frac{1}{Z(x)} \prod_{t=1}^{T} \prod_{\alpha \in \mathcal{C}} \psi_{\alpha}(y_{\alpha}, x, t) \]

- **Architecture**:
 - Factorial CRF + unary potentials from BiLSTM.
- **Factor Types**:
 - Transition: Capture information about neighboring tags.
 - Pairwise: Model correlations between tags.
 - Neural: BiLSTM predicts label scores for all tags.
- **Inference on factorial CRF**:
 - Exact Inference is hard; we resort to Loopy Belief Propagation.
- **Decoding**:
 - Minimum Bayes Risk Decoding for Hamming Loss.
- **Language-specific weights**:
 - Learn language-specific weights for each language & generic weights for trends across both languages.
 - For example, \(\lambda_T = \lambda_{T, \text{gen}} + \lambda_{T, \text{lang}} \)

Experiments & Results

- Pick HRL/LRL partners from 4 language families.
- Limit target language dataset size to 100 or 1000 sentences.
- Novel framework for sequence tagging: hybrid model of factorial CRFs with unary potentials from biLSTM.
- Utilize expressiveness of NN representations while graphical model approach ensures:
 1. model interpretability
 2. exploiting variable dependencies

Conclusions

- Empirically strong performances on morph tagging.
- Can be extended to multiple languages and other sequence labeling tasks.