A Reader

We show in Figure 1 a particular instance of Reader, including the components and the information flow among them. This particular Reader has three symbolic processors (namely, Symbolic Matching, Symbolic Reasoner, Symbolic Analyzer) and a Neural Net Controller (with Policy-net as the sub-component). All the components in Reader are coupled through intensive exchange of information as shown in Figure 1. Below is a snapshot of the information processing at time t in Reader.

- **STEP-1**: let the processor Symbolic Analyzer to check the Action History (M^t_{act}) to construct some symbolic features for the trajectory of actions;
- **STEP-2**: access Matrix Memory (M^t_{mat}) to get an vectorial representation for time t, denoted as s_t;
- **STEP-3**: access Inline Memory (M^t_{inl}) to get the symbolic representation $x_t^{(s)}$ (through location-based addressing) and distributed representation $x_t^{(d)}$ (through location-based addressing and/or content-based addressing);
- **STEP-4**: feed $x_t^{(d)}$ and the embedding of $x_t^{(s)}$ to Neural Net Controller to fuse with s_t;
- **STEP-5**: get the candidate objects (some may have been eliminated by $x_t^{(s)}$) and let them meet $x_t^{(d)}$ through the processor Symbolic Matching for the matching of them on symbolic aspect;
- **STEP-6**: get the candidate objects (some may have been eliminated by $x_t^{(s)}$) and let them meet the result of STEP-4 in Neural Net Controller;
- **STEP-7**: Policy-net combines the result of STEP-6 and STEP-5, to issue actions;
- **STEP-8**: update M^t_{obj}, M^t_{mat} and M^t_{inl} with actions on both symbolic and distributed representations;
- **STEP-9**: put M^t_{obj} through the processor Symbolic Reasoner for some high-level reasoning and logic consistency.

Note that we consider only single action for simplicity, while in practice it is common to have multiple actions at one time step, which requires a slightly more complicated design of the policy as well as the processing pipeline.

B Experiments: Logical consistency

Suppose at time t, the ontology in M^t_{obj} contains the following three facts (among others)

- **fact-1**: John (a PERSON-object) is in kichten (a LOCATION-object);
- **fact-2**: John carries apple (an ITEM-object);
- **fact-3**: John drops apple;

where fact-3 is just established by Policy-net at t. Symbolic Reasoner will add a new is-located-atB link between apple and kitchen based on domain logic*.

*The logic says, an item is not “in” a location if it is held by a person.
Figure 1: A particular implementation of Reader in a closer look, which reveals some details about the entanglement of neural and symbolic components. Dashed lines stand for continuous signal and the solid lines for discrete signal.