A Walk-based Model on Entity Graphs for Relation Extraction

Fenia Christopoulou1,3, Makoto Miwa2,3, Sophia Ananiadou1,3

1School of Computer Science, The University of Manchester, UK
2Toyo Technological Institute, Nagoya, Japan
3Artificial Intelligence Research Center (AIRC), National Institute of Advance Industrial Science and Technology (AIST)

\textbf{Motivating Example:} Tofting and capital are related through the word "capital" and with the word "wages".

New Walk Generation

1. Pair & Context Representations
 - Target pair: named entity pair of interest
 - Target pair context: sentence words excluding pair
 - Relative positions: entity \(e_i\) word \(w_j\) to entity \(e_j\)
 - Target entities \(e_i, e_j\) representations: \(v_{c,i} = [e_i, t_i, p_{c,i}]\)
 - Pair \((e_i, e_j)\) context representation:
 \[C_{c,i,j} = W_c [v_{c,i}, v_{c,j}, p_{c,i}, p_{c,j}] \]

2. Edge Representation
 - Initial representation: \(\theta = (q, \alpha, \omega)\)
 - Classification layer
 - Edge layer
 - Walk layer
 - Final representation: \(\theta_{final} = \theta \times \theta\)

\textbf{Settings}

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Training Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACE 2005</td>
<td>Adam Optimizer</td>
</tr>
<tr>
<td>7 entity types</td>
<td>L2 Regularization</td>
</tr>
<tr>
<td>6 relations types</td>
<td>Early Stopping</td>
</tr>
</tbody>
</table>

SoA Models:
- SPTree \[2\]
- CNN \[3\]

One pair/sentence:
- \(\checkmark\)
- \(\checkmark\)
- \(\checkmark\)
- \(\checkmark\)
- \(\checkmark\)
- \(\checkmark\)

Data split:
- Train/test 5-fold

Results

<table>
<thead>
<tr>
<th>Model</th>
<th>P</th>
<th>R</th>
<th>F1 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPTree</td>
<td>70.1</td>
<td>61.2</td>
<td>65.3</td>
</tr>
<tr>
<td>Baseline</td>
<td>72.5</td>
<td>53.3</td>
<td>61.4</td>
</tr>
<tr>
<td>No walks (l = 1)</td>
<td>71.9</td>
<td>53.6</td>
<td>62.7</td>
</tr>
<tr>
<td>Walks (l = 2)</td>
<td>69.9</td>
<td>58.4</td>
<td>63.6</td>
</tr>
<tr>
<td>Walks (l = 4)</td>
<td>69.7</td>
<td>59.5</td>
<td>64.2</td>
</tr>
<tr>
<td>Walks (l = 8)</td>
<td>71.5</td>
<td>53.3</td>
<td>62.4</td>
</tr>
</tbody>
</table>

Table 1: Performance on ACE 2005 test set.
- \(\checkmark\): Walks model \(l = 4\) approximates the state-of-the-art.
- \(\checkmark\): Longer walks improve recall.
- Too long walks degrade performance.

References

Contact: efenia.christopoulous@manchester.ac.uk