Paper Abstract Writing through Editing Mechanism

Qingyun Wang1, Zhihao Zhou1, Lifu Huang1, Spencer Whitehead1, Boliang Zhang1, Heng Ji1, Kevin Knight2

1 Computer Science Department, Rensselaer Polytechnic Institute
2 Information Sciences Institute, University of Southern California

Overview

- **Task:** given a title, we aim to automatically generate a paper abstract.
- **Motivation 1:** a scientific paper abstract should **focused on the topics** specified in the title. – *Seq2Seq with Attention*
- **Motivation 2:** human writers usually start with a draft and **keep polishing and revising it.** – *Writing-Editing with Attentive Revision Gate*

"It is perfectly okay to write garbage — as long as you *edit* brilliantly." — by C. J. Cherryh

Example

- **Title:** An effective method of using Web based information Relation Extraction[1]
- **Human written abstract:** We propose a method that incorporates paraphrase information from the Web to boost the performance of a supervised relation extraction system. Contextual information is extracted from the Web using a semi-supervised process, and summarized by skip-bigram overlap measures over the entire extract. This allows the capture of local contextual information as well as more distant associations. We observe a statistically significant boost in relation extraction performance.
- **LSTM LM:** This paper proposes a method for automatic extraction of salient information from an original text. Our method shows promising results in which a noun clustering is employed. The relation is then be applied to the relation extraction task.
- **Initial draft:** In this paper we focus on the task of extracting the most commonly used Web pages in named entity recognition (IE) information from a large corpus of news articles. In particular, we propose a new kernel method that can be applied to a large collection of Web pages by automatic detection of labeled and unlabeled data. Our method is very simple and because the related method of using the data to be used as a guide as a source of information for the topic detection and classification can be applied, but often fail at improving the performance by combining relations and previous methods. In this method, the co-occurrence counts and the occurrences of each relation are not statistically significant, but also that it is possible to contribute to entity relations with a term in a variety of topics.
- **Final draft:** In this paper we focus on the task of identifying the most commonly relevant features of Web documents. In particular, we propose a generic, automated IE algorithm that can be applied to a large collection of Web pages containing full large documents. This is a first step in helping a wide range of collaborative works for relation extraction. We show that it is possible to eliminate a good number of errors in relation extraction from a variety of documents, but that it difficult to define a problem of term extraction.

Approach Overview

Human written abstract:

- **Title:** An effective method of using Web based information Relation Extraction[1]
- **Human written abstract:** We propose a method that incorporates paraphrase information from the Web to boost the performance of a supervised relation extraction system. Contextual information is extracted from the Web using a semi-supervised process, and summarized by skip-bigram overlap measures over the entire extract. This allows the capture of local contextual information as well as more distant associations. We observe a statistically significant boost in relation extraction performance.
- **LSTM LM:** This paper proposes a method for automatic extraction of salient information from an original text. Our method shows promising results in which a noun clustering is employed. The relation is then be applied to the relation extraction task.
- **Initial draft:** In this paper we focus on the task of extracting the most commonly used Web pages in named entity recognition (IE) information from a large corpus of news articles. In particular, we propose a new kernel method that can be applied to a large collection of Web pages by automatic detection of labeled and unlabeled data. Our method is very simple and because the related method of using the data to be used as a guide as a source of information for the topic detection and classification can be applied, but often fail at improving the performance by combining relations and previous methods. In this method, the co-occurrence counts and the occurrences of each relation are not statistically significant, but also that it is possible to contribute to entity relations with a term in a variety of topics.
- **Final draft:** In this paper we focus on the task of identifying the most commonly relevant features of Web documents. In particular, we propose a generic, automated IE algorithm that can be applied to a large collection of Web pages containing full large documents. This is a first step in helping a wide range of collaborative works for relation extraction. We show that it is possible to eliminate a good number of errors in relation extraction from a variety of documents, but that it difficult to define a problem of term extraction.

Method Comparison

<table>
<thead>
<tr>
<th>METEOR</th>
<th>ROUGE-L</th>
<th>HUMAN%</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSTM-LM</td>
<td>0</td>
<td>8.7</td>
</tr>
<tr>
<td>Seq2Seq</td>
<td>13.5</td>
<td>19.2</td>
</tr>
<tr>
<td>ED(1)*</td>
<td>13.3</td>
<td>20.3</td>
</tr>
<tr>
<td>ED(2)*</td>
<td>14</td>
<td>19.8</td>
</tr>
</tbody>
</table>

TED(1) is the first draft and ED(2) is the revised draft

Remaining Challenges

- Lack knowledge of deep connections among scientific knowledge elements
- Lack specification, conciseness
- Lack common sense knowledge
- Lack logical coherence
