Multi-representation ensembles and delayed SGD updates improve syntax-based NMT

Danielle Saunders† Felix Stahlberg† Adrià de Gispert‡† Bill Byrne‡†

†Department of Engineering, University of Cambridge, UK £SDL Research, Cambridge, UK

Multi-representation ensembling with FSTs

- Problem: ensemble models with different target representations which may not be synchronized, e.g.:
 - Words: No errors occurred
 - Subwords: No/w errors/w occur ed/w
 - POS/plain: DT No NNS errors VBD occurred
 - Derivation: S/R NP VP/R DT NNS/R No errors VBD/R occurred
 - Tree: (S (NP (DT No) (NNS errors)) (VP (VBD occurred)))

- Use FSTs for a synchronized search over two representations such that paths \(p \in \mathcal{P} \) through the FST map between representations:

\[i(p) \rightarrow o(p) \]

- Accumulate scores at the path level via a 2-level beam search
 - An ideal equal-weight ensembling of two models \(P_i \) and \(P_o \) yields:
 \[p^* = \arg\max_{p \in \mathcal{P}} P_i(i(p)) P_o(o(p)) \]
 with \(o(p^*) \) as the external representation of the translation.

- Delayed SGD updates

 - Gradients for NMT training updates usually estimated every batch
 - Long sequences (e.g. syntax representations) mean fewer sequences per batch: could cause noisier updates

 - Representation | Mean length
 |-----------------|-----------------
 | Plain subwords (BPE) | 27.5
 | POS/plain | 53.3
 | Derivation | 73.8
 | Tree | 120

 - Lengths for representations from first 1M training sentences of English ASPEC

 - Delayed SGD accumulates estimates over several batches per update on one GPU

 - Decouples maximum batch size from available memory / GPUs

 - Implementation: multistep_optimizer in https://github.com/tensorflow/tensor2tensor

Experiments

- All models trained with the first 1M sentences of ASPEC Ja-En
- Source and target sentences use BPE (30K vocab)
- All models use the Tensor2Tensor Transformer architecture
- All ensembles contain two models

Delayed SGD improves long representations

- Syntax performance severely lags plain BPE without delayed SGD
- Reduced learning rate alone does not provide the same gains

Gains from multi-representation ensembles

- Denser syntax representations have better single model performance
- Choice of internal / external representation affects result

Acknowledgements

This work was supported by EPSRC grant EP/L027623/1.
Contact: {ds636,fs439,ad465,wjb31}@cam.ac.uk

Implementation: https://github.com/ucam-smt/sgnmt