Linear Time Constituency Parsing with RNNs and Dynamic Programming

Juneki Hong 1 Liang Huang 1,2

1 Oregon State University
2 Baidu Research Silicon Valley AI Lab
Span Parsing is SOTA in Constituency Parsing

- Cross+Huang 2016 introduced Span Parsing
 - But with greedy decoding.
- Stern et al. 2017 had Span Parsing with Exact Search and Global Training
 - But was too slow: $O(n^3)$
- Can we get the best of both worlds?
 - Something that is both fast and accurate?
Both Fast and Accurate!

Baseline Chart Parser (Stern et al. 2017a) \hspace{1cm} 91.79

Our Linear Time Parser \hspace{1cm} 91.97
In this talk, we will discuss:

- Linear Time Constituency Parsing using dynamic programming
 - Going slower in order to go faster: $O(n^3) \rightarrow O(n^4) \rightarrow O(n)$
- Cube Pruning to speed up Incremental Parsing with Dynamic Programming
 - From $O(n b^2)$ to $O(n b \log b)$
- An improved loss function for Loss-Augmented Decoding
 - 2nd highest accuracy among single systems trained on PTB only

$$O(2^n) \rightarrow O(n^3) \rightarrow O(n^4) \sim O(nb^2) \sim O(nb \log b)$$
Span Parsing

- Span differences are taken from an encoder (in our case: a bi-LSTM)
- A span is scored and labeled by a feed-forward network.
- The score of a tree is the sum of all the labeled span scores

\[s_{\text{tree}}(t) = \sum_{(i,j,X) \in t} s(i,j,X) \]

\[s(i,j,X) = \left(f_j - f_i, b_i - b_j\right) \]
Incremental Span Parsing Example

<table>
<thead>
<tr>
<th>Action</th>
<th>Label</th>
<th>Stack</th>
</tr>
</thead>
</table>

Cross + Huang 2016
Incremental Span Parsing Example

Cross + Huang 2016
Incremental Span Parsing Example

Cross + Huang 2016
Incremental Span Parsing Example

<table>
<thead>
<tr>
<th>Action</th>
<th>Label</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td>2</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td>3</td>
<td>Shift</td>
<td>ø</td>
</tr>
</tbody>
</table>

Cross + Huang 2016
Incremental Span Parsing Example

Cross + Huang 2016
Incremental Span Parsing Example

Cross + Huang 2016
Incremental Span Parsing Example

<table>
<thead>
<tr>
<th>Action</th>
<th>Label</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td>2</td>
<td>Shift</td>
<td>ø (0, 1)</td>
</tr>
<tr>
<td>3</td>
<td>Shift</td>
<td>ø (0, 1) (1, 2)</td>
</tr>
<tr>
<td>4</td>
<td>Reduce</td>
<td>NP (0, 1) (1, 3)</td>
</tr>
<tr>
<td>5</td>
<td>Reduce</td>
<td>ø (0, 3)</td>
</tr>
<tr>
<td>6</td>
<td>Shift</td>
<td>ø (0, 3) (3, 4)</td>
</tr>
</tbody>
</table>

Cross + Huang 2016
Incremental Span Parsing Example

<table>
<thead>
<tr>
<th>Action</th>
<th>Label</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td>2</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td>3</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td>4</td>
<td>Reduce</td>
<td>NP</td>
</tr>
<tr>
<td>5</td>
<td>Reduce</td>
<td>ø</td>
</tr>
<tr>
<td>6</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td>7</td>
<td>Shift</td>
<td>NP</td>
</tr>
</tbody>
</table>

Cross + Huang 2016
Incremental Span Parsing Example

Diagram:
- The diagram illustrates the parsing process for the sentence: "Eat ice cream after lunch.

Table:

<table>
<thead>
<tr>
<th>Action</th>
<th>Label</th>
<th>Stack</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0, 1)</td>
</tr>
<tr>
<td>2</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0, 1) (1, 2)</td>
</tr>
<tr>
<td>3</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0, 1) (1, 2) (2, 3)</td>
</tr>
<tr>
<td>4</td>
<td>Reduce</td>
<td>NP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0, 1) (1, 3)</td>
</tr>
<tr>
<td>5</td>
<td>Reduce</td>
<td>ø</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0, 3)</td>
</tr>
<tr>
<td>6</td>
<td>Shift</td>
<td>ø</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0, 3) (3, 4)</td>
</tr>
<tr>
<td>7</td>
<td>Shift</td>
<td>NP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0, 3) (3, 4) (4, 5)</td>
</tr>
<tr>
<td>8</td>
<td>Reduce</td>
<td>PP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0, 3) (3, 5)</td>
</tr>
</tbody>
</table>

Cross + Huang 2016
Incremental Span Parsing Example

Cross + Huang 2016
How Many Possible Parsing Paths?

- 2 actions per state.
- $O(2^n)$
Equivalent Stacks?

• Observe that all stacks that end with \((i, j)\) will be treated the same!

• ...Until \((i, j)\) is popped off.

\[
\begin{align*}
([0, 2], & (2, 7), (7, 9)] \\
([0, 3], & (3, 7), (7, 9)]
\end{align*}
\]

becomes

\[
[... , (7, 9)]
\]

• So we can treat these as “temporarily equivalent”, and merge.

Graph-Structured Stack (Tomita 1988; Huang + Sagae 2010)
Equivalent Stacks?

- Observe that all stacks that end with \((i, j)\) will be treated the same!
- …Until \((i, j)\) is popped off.

\[
\begin{align*}
\ldots, (0, 2) & \quad \ldots, (2, 7) \\
\ldots, (0, 3) & \quad \ldots, (3, 7) \\
\end{align*}
\]

- This is our new stack representation.

Graph-Structured Stack (Tomita 1988; Huang + Sagae 2010)
• Observe that all stacks that end with \((i, j)\) will be treated the same!
• …Until \((i, j)\) is popped off.

\[
\begin{align*}
\ldots, (0, 2) & \quad \ldots, (2, 7) & \quad \ldots, (2, 9) \\
\ldots, (0, 3) & \quad \ldots, (3, 7) & \quad \ldots, (3, 9)
\end{align*}
\]

Reduce Actions: \(O(n^3)\)

Graph-Structured Stack (Tomita 1988; Huang + Sagae 2010)
Dynamic Programming: Merging Stacks

- Temporarily merging stacks will make our state space polynomial.

- And our parsing state is represented by top span \((i, j)\).
Shift-Reduce Parsers are traditionally action synchronous.

This makes beam-search straightforward.

We will also do the same.

But will show that this will slow down our DP (before applying beam-search).
Gold: Shift (0,1)
Action Synchronous Parsing Example

Gold:

<table>
<thead>
<tr>
<th></th>
<th>Shift (0,1)</th>
<th>Shift (1,2)</th>
</tr>
</thead>
</table>

Left Pointers

Gold Parse
Gold: Shift (0,1) Shift (1,2) Shift (2, 3)
Action Synchronous Parsing Example

Gold:
Shift (0,1) Shift (1,2) Shift (2,3) Reduce (1,3)
Action Synchronous Parsing Example

Gold:

<table>
<thead>
<tr>
<th></th>
<th>Shift (0,1)</th>
<th>Shift (1,2)</th>
<th>Shift (2, 3)</th>
<th>Reduce (1, 3)</th>
<th>Reduce (0, 3)</th>
</tr>
</thead>
</table>

Gold Parse

Left Pointers

1 → sh → 0,1 → sh → 1,2 → sh → 2,3 → sh → 3,4 → r → 2,4 → sh → 1,3 → sh → 0,2 → r → 0,3 → sh → 2,3 → sh → 3,4 → sh → 0,3
Action Synchronous Parsing Example

Gold:

<table>
<thead>
<tr>
<th></th>
<th>Shift (0, 1)</th>
<th>Shift (1, 2)</th>
<th>Shift (2, 3)</th>
<th>Reduce (1, 3)</th>
<th>Reduce (0, 3)</th>
<th>Shift (3, 4)</th>
</tr>
</thead>
</table>

Left Pointers

Gold Parse
Action Synchronous Parsing Example

Gold:

<table>
<thead>
<tr>
<th></th>
<th>Shift (0,1)</th>
<th>Shift (1,2)</th>
<th>Shift (2,3)</th>
<th>Reduce (1, 3)</th>
<th>Reduce (0, 3)</th>
<th>Shift (3, 4)</th>
<th>Shift (4, 5)</th>
<th>Reduce (3, 5)</th>
<th>Reduce (0, 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sh</td>
<td>sh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>sh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>sh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Runtime Analysis: $O(n^4)$
Runtime Analysis: $O(n^4)$

$\epsilon \xrightarrow{\text{sh}} (0,1) \xrightarrow{\text{sh}} (1,2) \xrightarrow{\text{sh}} (2,3) \xrightarrow{\text{sh}} (3,4) \xrightarrow{\text{sh}} (4,5) \xrightarrow{\text{r}} (3,5) \xrightarrow{\text{r}} (2,5) \xrightarrow{\text{r}} (1,5) \xrightarrow{\text{r}} (0,5)$

$\epsilon \xrightarrow{\text{sh}} (0,2) \xrightarrow{\text{r}} (1,3) \xrightarrow{\text{sh}} (2,4) \xrightarrow{\text{sh}} (4,5) \xrightarrow{\text{r}} (3,5) \xrightarrow{\text{r}} (2,5) \xrightarrow{\text{r}} (1,5) \xrightarrow{\text{r}} (0,5)$

$\epsilon \xrightarrow{\text{sh}} (0,3) \xrightarrow{\text{r}} (2,4) \xrightarrow{\text{sh}} (4,5) \xrightarrow{\text{r}} (3,5) \xrightarrow{\text{r}} (2,5) \xrightarrow{\text{r}} (1,5) \xrightarrow{\text{r}} (0,5)$

$\epsilon \xrightarrow{\text{sh}} (2,3) \xrightarrow{\text{sh}} (3,4) \xrightarrow{\text{sh}} (4,5) \xrightarrow{\text{r}} (3,5) \xrightarrow{\text{r}} (2,5) \xrightarrow{\text{r}} (1,5) \xrightarrow{\text{r}} (0,5)$

$\epsilon \xrightarrow{\text{sh}} (3,4) \xrightarrow{\text{sh}} (4,5) \xrightarrow{\text{r}} (3,5) \xrightarrow{\text{r}} (2,5) \xrightarrow{\text{r}} (1,5) \xrightarrow{\text{r}} (0,5)$

#steps: $2n - 1 = O(n)$

Huang+Sagae 2010
Runtime Analysis: $O(n^4)$

#states per step: $O(n^2)$

#steps: $2n - 1 = O(n)$
Runtime Analysis: $O(n^4)$

- $\epsilon \xrightarrow{\text{sh}} (0,1) \xrightarrow{\text{sh}} (1,2) \xrightarrow{\text{sh}} (2,3) \xrightarrow{\text{sh}} (3,4) \xrightarrow{\text{sh}} (4,5) \xrightarrow{\text{r}} (3,5) \xrightarrow{\text{r}} (2,5) \xrightarrow{\text{r}} (1,5) \xrightarrow{\text{r}} (0,5)$

- #states per step: $O(n^2)$

- #steps: $2n - 1 = O(n)$

- $O(n^3)$ states

Huang+Sagae 2010
Runtime Analysis: $O(n^4)$

#left pointers per state: $O(n)$

Check out the paper for our new theorem:

$l' = l - 2(j - i) + 1$

Thanks to Dezhong Deng!

#states per step: $O(n^2)$

#steps: $2n - 1 = O(n)$

$O(n^3)$ states

l': $[\ldots, (k, i)]$

l: $[\ldots, (i, j)]$

$l + 1$: $[\ldots, (k, j)]$

$O(n^4)$

Huang+Sagae 2010
Our Action-Synchronous algorithm has a slower runtime than CKY!

However, it also becomes straightforward to prune using beam search.

So we can achieve a linear runtime in the end.
Now our runtime is $O(n)$.
But this $O(n)$ is hiding a constant.
But this $O(n)$ is hiding a constant.

$O(b)$ left pointers per state

$O(nb^2)$ runtime
• We can apply cube pruning to make $O(nb \log b)$

Cube Pruning

Chiang 2007

Huang+Chiang 2007
We can apply cube pruning to make $O(nb \log b)$.

By pushing all states and their left pointers into a heap.
Cube Pruning

- We can apply cube pruning to make $O(nb \log b)$

- By pushing all states and their left pointers into a heap
- And popping the top b unique subsequent states

Chiang 2007
Huang+Chiang 2007
Cube Pruning

- We can apply cube pruning to make $O(nb \log b)$

- By pushing all states and their left pointers into a heap
- And popping the top b unique subsequent states
- First time Cube-Pruning has been applied to Incremental Parsing

Chiang 2007
Huang+Chiang 2007
Runtime on PTB and Discourse Treebank

- Chart Parsing: $O(n^{2.26})$
- Beam 20 No Cube-Pruning: $O(n^{1.26})$
- Beam 20 Cube Pruned: $O(n^{1.08})$
- Beam 5 Cube Pruned: $O(n^{0.97})$

Time (sec) vs. Sentence Length

Chart parsing

Our work

Time (sec) vs. Discourse Length (words)

This Work Beam 10

42
• Structured SVM approach (Taskar et al. 2003; Stern et al. 2017):
 • Goal: Score the gold tree higher than all others by a margin:
 \[\forall t, s(t^*) - s(t) \geq \Delta(t, t^*) \]

• Loss Augmented Decoding:
 • During Training: Return the most violated tree (i.e., highest augmented score):
 \[\hat{t} = \arg \max_t (s(t) + \Delta(t, t^*)) \]

• Minimize:
 \[(s(\hat{t}) + \Delta(\hat{t}, t^*)) - s(t^*) \]
Loss Function

- Counts the incorrectly labeled spans in the tree (Stern et al. 2017)
- Happens to be decomposable, so can even be used to compare partial trees.

$$\Delta(t, t^*) = \sum_{(i, j, X) \in t} 1(X \neq t^*_{(i, j)})$$
Novel Cross-Span Loss

- We observe that the null label \emptyset is used in two different ways:
 - To facilitate ternary and n-ary branching trees.
 - As a default label for incorrect spans that violate other gold spans.
• We modify the loss to account for incorrect spans in the tree.

\[\Delta(t, t^*) = \sum_{(i, j, X) \in t} 1(X \neq t^*_{(i, j)}) \]
We modify the loss to account for incorrect spans in the tree.

\[\text{cross}(i, j, t^*) \]

Indicates whether \((i, j)\) is crossing a span in the gold tree

\[\Delta(t, t^*) = \sum_{(i, j, X) \in t} 1\left(X \neq t^*_{(i, j)} \lor \text{cross}(i, j, t^*) \right) \]

Still decomposable over spans, so can be used to compare partial trees.
Max-Violation Updates

- Take the largest augmented loss value across all time steps.
- This is the Max-Violation, that we use to train.

Huang et. al. 2012
Comparison with Baseline Chart Parser

<table>
<thead>
<tr>
<th>Model</th>
<th>Note</th>
<th>F1 (PTB test)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stern et al. (2017a)</td>
<td>Baseline Chart Parser</td>
<td>91.79</td>
</tr>
<tr>
<td></td>
<td>+our cross-span loss</td>
<td>91.81</td>
</tr>
<tr>
<td>Our Work</td>
<td>Beam 15</td>
<td>91.84</td>
</tr>
<tr>
<td></td>
<td>Beam 20</td>
<td>91.97</td>
</tr>
</tbody>
</table>
Comparison to Other Parsers

<table>
<thead>
<tr>
<th>PTB only, Single Model, End-to-End</th>
<th>Reranking, Ensemble, Extra Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Model</td>
</tr>
<tr>
<td>Durett + Klein 2015</td>
<td>Vinyals et al. 2015</td>
</tr>
<tr>
<td>Cross + Huang 2016</td>
<td></td>
</tr>
<tr>
<td>Dyer et al. 2016</td>
<td>Choe + Charniak 2016</td>
</tr>
<tr>
<td>Stern et al. 2017a</td>
<td>Fried et al. 2017</td>
</tr>
<tr>
<td>Stern et al. 2017c</td>
<td></td>
</tr>
<tr>
<td>Our Work</td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>F1</td>
</tr>
<tr>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td>F1</td>
</tr>
<tr>
<td>Durett + Klein 2015</td>
<td></td>
</tr>
<tr>
<td>Cross + Huang 2016</td>
<td>Original Span Parser</td>
</tr>
<tr>
<td>Liu + Zhang 2016</td>
<td></td>
</tr>
<tr>
<td>Dyer et al. 2016</td>
<td>Discriminative</td>
</tr>
<tr>
<td>Stern et al. 2017a</td>
<td>Baseline Chart Parser</td>
</tr>
<tr>
<td>Stern et al. 2017c</td>
<td>Separate Decoding</td>
</tr>
<tr>
<td>Our Work</td>
<td>Beam 20</td>
</tr>
<tr>
<td>Vinyals et al. 2015</td>
<td>Ensemble</td>
</tr>
<tr>
<td>Dyer et al. 2016</td>
<td>Generative Reranking</td>
</tr>
<tr>
<td>Choe + Charniak 2016</td>
<td>Reranking</td>
</tr>
<tr>
<td>Fried et al. 2017</td>
<td>Ensemble Reranking</td>
</tr>
<tr>
<td>Reranking, Ensemble, Extra Data</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Linear-Time, Span-Based Constituency Parsing with Dynamic Programming
- Cube-Pruning to speedup Incremental Parsing with Dynamic Programming
- Cross-Span Loss extension for improving Loss-Augmented Decoding
- Result: Faster and more accurate than cubic-time Chart Parsing
 - 2nd highest accuracy for single-model end-to-end systems trained on PTB only
 - Stern et al. 2017c is more accurate, but with separate decoding, and is much slower
 - After this ACL, definitely no longer true. (e.g. Joshi et al. 2018, Kitaev+Klein 2018)
 - But both are Span-Based Parsers and can be linearized in the same way!

\[
O(2^n) \rightarrow O(n^3) \rightarrow O(n^4) \sim O(nb^2) \sim O(nb \log b)
\]
Thank you! Questions?

[Graph showing time (sec) vs. sentence length and discourse length (words).]

- Chart Parsing: $O(n^{2.26})$
- Beam 20 No Cube-Pruning: $O(n^{1.26})$
- Beam 20 Cube Pruned: $O(n^{1.08})$
- Beam 5 Cube Pruned: $O(n^{0.97})$

[Chart parsing and our work markers on the graphs.]
Acknowledgements

- Dezhong Deng for his theorem for predecessor states.
- And his mathematical proofreading of the training sections.
- Mitchell Stern for releasing his code and his suggestions.