GNEG: Graph-Based Negative Sampling for word2vec

Zheng Zhang\(^1,2\) and Pierre Zweigenbaum\(^1\)
\(^1\)LIMSI, CNRS, Université Paris-Saclay
\(^2\)LRI, Université Paris-Sud, CNRS, Université Paris-Saclay

1. Motivation

- Negative Sampling (NEG) is an important component in word2vec:

 As an approximation to Noise Contrastive Estimation (NCE), NEG brings a significant speed-up and achieves very good performance on distributed word representation learning.

- But NEG is not targeted for training words, noise distribution is only based on the unigram distribution (word count):

\[
P_n(w) = \frac{u(w)^3}{\sum_{i=1}^{\text{vocab}} u(w_i)^3}
\]

- We hypothesize that taking into account global, corpus-level information and generating a different noise distribution for each target word better satisfies the requirements of negative examples for each training word than the original frequency-based distribution.

2. Graph-Based Negative Sampling

Build the graph-based negative sampling noise distribution in 3 steps!

Step 1: "Making the dough" - Generate an undirected weighted word co-occurrence network from the corpus and get the adjacency matrix \(A\) from it for the future use.

Step 2: "Creating the toppings" - Three methods to generate basic noise distribution matrices on the word co-occurrence network.

- **Option 1:** Directly using the training word context distribution \(A\) extracted from the word co-occurrence network.
 - Zero co-occurrence case: Some vocabulary words may never co-occur with a given training word, which makes them impossible to be selected for this training word.
 - Solution: Replacing all zeros in matrix with the minimum non-zero value of their corresponding rows.

- **Option 2:** Calculating the difference between the original unigram distribution and the training word context distribution.
 - For zeros and negative values in the matrix, we reset them to the minimum non-zero value of the corresponding rows.

- **Option 3:** Performing t-step random walks on the word co-occurrence network.
 - Using the t-step random walk transition matrix as the final noise distribution matrix
 - Two versions: with/without self-loops.

Step 3: "Baking" - Based on the previous results, use the power function to adjust the distribution and then normalize all rows of the adjusted matrix to get the final noise distribution.

\[
P_r(w_r, w_c) = \left(\frac{B_{r,c}}{\sum_{l=1}^{\text{vocab}} B_{r,l}} \right)^p
\]

3. Experiments

Corpora
- We use the skip-gram negative sampling model with window size \(5\), vocabulary size \(10000\), vector dimension size \(200\), number of iterations \(5\) and negative examples \(5\) to compute baseline word embeddings.
- Our graph-based negative sampling models share the parameters of the baseline.
- All four models are trained on an English Wikipedia dump from April 2017 of three sizes: about \(19\)M tokens, about \(94\)M tokens (both are for detailed analyses and non-common parameters grid search in each of the three graph-based models) and around \(2.19\) billion tokens.

Evaluation Datasets
We evaluate the resulting word embeddings:
- on word similarity tasks using WordSim-353 (Finkelstein et al., 2001) and SimLex-999 (Hill et al., 2014) (correlation with humans).
- on the word analogy task (Mikolov et al., 2013a) (% correct).

Statistical Significance
- Steiger’s Z tests (Steiger, 1980) for WordSim-353 and SimLex-999
- Approximate randomization (Yeh, 2000) for the word analogy task

4. Results

Best parameters

<table>
<thead>
<tr>
<th>distribution</th>
<th>(d_{max})</th>
<th>(p)</th>
<th>others</th>
<th>Training time</th>
</tr>
</thead>
<tbody>
<tr>
<td>bigram</td>
<td>3</td>
<td>0.25</td>
<td>replace zeros = (T)</td>
<td>(8 + 2.5) hours*</td>
</tr>
<tr>
<td>difference</td>
<td>3</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Random walk</td>
<td>5</td>
<td>0.25</td>
<td>(t = 2, \text{no_self_loops} = \text{T})</td>
<td></td>
</tr>
</tbody>
</table>

*Trained on the entire Wikipedia corpus using \(50\) logical cores on a server with \(8\) Intel Xeon E5-2680 processors.

5. Future work

- Graph-based context words selection
- Graph-based training words reordering for word2vec
- Word co-occurrence matrix factorization for distributed word representation learning