KyotoEBMT System Description for the 2nd Workshop on Asian Translation

John Richardson
Raj Dabre
Chenhui Chu
Fabien Cromières
Toshiaki Nakazawa
Sadao Kurohashi

Graduate School of Informatics, Kyoto University

KyotoEBMT System Pipeline

1. Parallel Corpus → Parser → Alignment → Translation Memory
2. Input → Parser → Example retrieval → Initial Hypotheses → n-best translations → Replacer → Final Translation
3. Decoder → Tuner → Reference Translations

Web Interface of Translation

Example based machine translation system based on dependency structure are introduced in this paper.

Conclusion and Future Work

KyotoEBMT system
- source code available under a GPL license at http://nlp.ist.i.kyoto-u.ac.jp/kyotoebmt/
 (version 1.0 just released!)
- uses both source and target dependency analysis
- online example retrieving
- availability of full translation examples at run time
- can use forest parses of input

Future work
- use a target-side tree language model
- online tuning of weights
- target-side structural features
- use of neural network language models in decoding

WAT2015 Official Results

<table>
<thead>
<tr>
<th>Dependency Types</th>
<th>BLEU</th>
<th>RIBES</th>
<th>HUMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>JE</td>
<td>21.31 (+0.71)</td>
<td>70.65 (+0.53)</td>
<td>16.50</td>
</tr>
<tr>
<td>EJ</td>
<td>22.89 (+1.82)</td>
<td>72.46 (+2.56)</td>
<td>32.50</td>
</tr>
<tr>
<td>JC</td>
<td>30.69 (+0.93)</td>
<td>76.78 (+1.57)</td>
<td>40.50</td>
</tr>
<tr>
<td>KJ</td>
<td>33.06 (+1.97)</td>
<td>78.95 (+2.99)</td>
<td>51.00</td>
</tr>
<tr>
<td>KC</td>
<td>29.99 (+2.78)</td>
<td>80.71 (+1.58)</td>
<td>16.00</td>
</tr>
<tr>
<td>KJ</td>
<td>31.40 (+3.83)</td>
<td>82.70 (+3.87)</td>
<td>12.50</td>
</tr>
<tr>
<td>KJ</td>
<td>36.30 (+2.73)</td>
<td>81.97 (+1.87)</td>
<td>16.75</td>
</tr>
<tr>
<td>KJ</td>
<td>38.53 (+3.78)</td>
<td>84.07 (+3.81)</td>
<td>18.50</td>
</tr>
</tbody>
</table>

(Improvement over WAT2014 in parentheses)

Remark: For WAT2014, J->C was the only direction for which reranking was worsening BLEU and Human Evaluation. For WAT2015, J->C is still the only direction for which reranking worsens Human Evaluation (although it now does improve BLEU)

Translation with Lattice Rules

Each path in this lattice corresponds to different choices of insertion position for X2, morphological forms of “be”, and the optional insertion of “at”.

- designed to handle an arbitrary number of non-terminals
- able to handle ambiguities of translation hypotheses
 - which target word is going to be used

Illustration of Translation Process

Web Interface of Translation

Example based machine translation system based on dependency structure are introduced in this paper.