KyotoEBMT System
Description for the
2nd Workshop on Asian Translation

John Richardson Raj Dabre Chenhui Chu
Fabien Cromières Toshiaki Nakazawa Sadao Kurohashi
Outline

• Overview of the system

• Improvements since WAT2014

• Results for WAT2015

• Conclusion
Overview of Kyoto-EBMT
KyotoEBMT Overview

• **Example-Based MT paradigm**
 • Need parallel corpus
 • Few language-specific assumptions
 • still a few language-specific rules

• **Tree-to-Tree Machine Translation**
 • Maybe the least commonly used variant of x-to-x
 • Sensitive to parsing quality of both source and target languages
 • Maximize the chances of preserving information

• **Dependency trees**
 • Less commonly used than Constituent trees
 • Most natural for Japanese
 • Should contain all important semantic information
KyotoEBMT pipeline

1. Preprocessing of the parallel corpus
2. Processing of input sentence
3. Decoding/Tuning/Reranking

- Tuning and reranking done with kbMira
- Seems to work better than PRO for us
Other specificities

• **No “phrase-table”**
 - all translation rules computed on-the-fly for each input
 - cons:
 - possibly slower (but not so slow)
 - computing significance/sparse features more complicated
 - pros:
 - full-context available for computing features
 - no limit on the size of matched rules
 - possibility to output perfect translation when input is very similar to an example

• **“Flexible” translation rules**
 - Optional words
 - Alternative insertion positions
 - Decoder can process flexible rules more efficiently than a long list of alternative rules
 - some “flexible rules” may actually encode >millions of “standard rules”
Flexible Rules Extracted on-the-fly

Matched Example:

Flexible translation rule created on-the-fly:
(encode many translation options at once)

X: Simple case
(X has an equivalent in the source example)

Y: ambiguous insertion position
“raw”: null-aligned -> optional
Other specificities

• **No “phrase-table”**
 • all translation rules computed on-the-fly for each input
 • cons:
 • possibly slower (but not so slow)
 • computing significance/ sparse features more complicated
 • pros:
 • *full-context* available for computing features
 • *no limit* on the size of matched rules
 • *possibility to output perfect translation* when input is very similar to an example

• **“Flexible” translation rules**
 • Optional words
 • Alternative insertion positions
 • Decoder can process flexible rules *more efficiently* than a long list of alternative rules
 • some “flexible rules” may actually encode >mllions of “standard rules”
Improvements since WAT2014
KyotoEBMT improvements

- Our system is **very** sensitive to parsing errors
- Continuous improvements to
 - Juman
 - KNP
 - SKP
- Added support for parse forests
 - (compact representations)
Forest Input

- A partial solution to the issues of Tree-to-Tree MT
 - Can help with parsing errors
 - Can help with syntactic divergences

- In WAT2014,
 - we used 20-best input parses
 - n-best list of all inputs merged and reranked

- Now, with forest:
 - an exponential number of input parses can be encoded
 - the selection of parses is done during decoding
KyotoEBMT improvements

- System is also very sensitive to alignment errors
- We used to correct alignments by using dependency trees (Nakazawa and Kurohashi, 2012)
- Now we further improve them with Nile (Riesa et al., 2011)
Alignment Improvements

- Used Nile (Riesa et al., 2011) to improve the alignment
 - As suggested by (Neubig and Duh, 2014)
 - Require us to parse into constituent trees as well
 - Ckylark parser for Japanese (Oda+., 2015)
 - Berkeley Parser for Chinese/English
- Nile becomes the third element of an alignment pipeline

\[\text{JC alignment F -> F:0.63} \quad \text{Giza++} \quad \text{with dependency trees} \quad \text{Nile} \quad \text{with constituent trees} \]

\[\text{F:0.69} \quad \text{(Nakazawa and Kurohashi, 2012)} \]

\[\text{F:0.75} \]

\((\text{Giza++ / Nile only -> F:0.70}) \)
KyotoEBMT improvements

- Many small improvements
 - Better handling of flexible rules
 - Bug fixes
- 10 new features
 - alignment score
 - context similarity score based on word2vec vectors
 - ...

Diagram:
1. Parallel Corpus → Parser → Alignment → Translation Memory
2. Input → Parser → Forest parses → Example Retrieval → Initial Hypotheses
3. Decoder → n-best translations → Reranker → Final Translation
 - Weights
 - Tuner
 - Reference Translations
KyotoEBMT improvements

• Reranking

• Previously used features:
 • 7-gram language model
 • RNNLM language model

• Now also using a Neural MT based bilingual Language Model
Bilingual Neural Network Language Model

• Combine **Neural MT** with EBMT
• We use the **state-of-the-art model** described by (Bahdanau et al., 2015)
 • Model seen as a Language Model conditionalized on the input
• Remarks:
 • Processing Japanese and Chinese as **sequences of characters** gave good results
 • No need to limit vocabulary (~4000/6000 characters for J/C)
 • Avoid segmentation issues
 • Faster training
 • **Neural MT models** alone produced bad translations
 • eg. Character BLEU for C->J almost half that of KyotoEBMT
 • Reranking performances saturates before MT performances

![Graph showing Reranked BLEU/ NeuralMT char-BLEU vs Epochs for J->C](image)
KyotoEBMT improvements

- **Improved working methods** (that matters!)
 - automatic nightly testing for variations in BLEU/ assertion errors/memory leaks
- Overall improvements across all the pipeline
- Estimating the global contribution of each element is tough, but here are the final results, ...
Results
Results for WAT2015

<table>
<thead>
<tr>
<th>Reranking</th>
<th>BLEU</th>
<th>RIBES</th>
<th>HUMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J->E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>21.31 (+0.71)</td>
<td>70.65 (+0.53)</td>
<td>16.50</td>
</tr>
<tr>
<td>YES</td>
<td>22.89 (+1.82)</td>
<td>72.46 (+2.56)</td>
<td>32.50</td>
</tr>
<tr>
<td>E->J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>30.69 (+0.92)</td>
<td>76.78 (+1.57)</td>
<td>40.50</td>
</tr>
<tr>
<td>YES</td>
<td>33.06 (+1.97)</td>
<td>78.95 (+2.99)</td>
<td>51.00</td>
</tr>
<tr>
<td>J->C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>29.99 (+2.78)</td>
<td>80.71 (+1.58)</td>
<td>16.00</td>
</tr>
<tr>
<td>YES</td>
<td>31.40 (+3.83)</td>
<td>82.70 (+3.87)</td>
<td>12.50</td>
</tr>
<tr>
<td>C->J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>36.30 (+2.73)</td>
<td>81.97 (+1.87)</td>
<td>16.75</td>
</tr>
<tr>
<td>YES</td>
<td>38.53 (+3.78)</td>
<td>84.07 (+3.81)</td>
<td>18.50</td>
</tr>
</tbody>
</table>
Results for WAT2015

<table>
<thead>
<tr>
<th>Reranking</th>
<th>BLEU</th>
<th>RIBES</th>
<th>HUMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J→E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>+0.71</td>
<td>70.65 (+0.53)</td>
<td>16.50</td>
</tr>
<tr>
<td>YES</td>
<td>+1.82</td>
<td>72.46 (+2.56)</td>
<td>32.50</td>
</tr>
<tr>
<td>E→J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>+0.92</td>
<td>76.78 (+1.57)</td>
<td>40.50</td>
</tr>
<tr>
<td>YES</td>
<td>+1.97</td>
<td>78.95 (+2.99)</td>
<td>51.00</td>
</tr>
<tr>
<td>J→C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>+2.78</td>
<td>80.71 (+1.87)</td>
<td>16.00</td>
</tr>
<tr>
<td>YES</td>
<td>+3.83</td>
<td>82.70 (+3.87)</td>
<td>12.50</td>
</tr>
<tr>
<td>C→J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>+2.73</td>
<td>81.97 (+1.87)</td>
<td>16.75</td>
</tr>
<tr>
<td>YES</td>
<td>+3.78</td>
<td>84.07 (+3.81)</td>
<td>18.50</td>
</tr>
</tbody>
</table>

The various improvements lead to good changes in BLEU. Almost +4 BLEU for the JC/CJ
Results for WAT2015

<table>
<thead>
<tr>
<th></th>
<th>Reranking</th>
<th>BLEU</th>
<th>RIBES</th>
<th>HUMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J->E</td>
<td>NO</td>
<td>21.31 (+0.71)</td>
<td>70.65 (+0.53)</td>
<td>16.50</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>22.89 (+1.82)</td>
<td>72.46 (+2.56)</td>
<td>32.50</td>
</tr>
<tr>
<td>E->J</td>
<td>NO</td>
<td>30.69 (+0.92)</td>
<td>76.78 (+1.57)</td>
<td>40.50</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>33.06 (+1.97)</td>
<td>78.95 (+2.99)</td>
<td>51.00</td>
</tr>
<tr>
<td>J->C</td>
<td>NO</td>
<td>29.99 (+2.78)</td>
<td>80.71 (+1.58)</td>
<td>16.00</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>31.40 (+3.83)</td>
<td>82.70 (+3.87)</td>
<td>12.50</td>
</tr>
<tr>
<td>C->J</td>
<td>NO</td>
<td>36.30 (+2.73)</td>
<td>81.97 (+1.87)</td>
<td>16.75</td>
</tr>
<tr>
<td></td>
<td>YES</td>
<td>38.53 (+3.78)</td>
<td>84.07 (+3.81)</td>
<td>18.50</td>
</tr>
</tbody>
</table>

Mystery!

Only for J->C, we find that reranking decreased Human Evaluation score. (While still improving BLEU/RIBES)
Results for WAT2015

<table>
<thead>
<tr>
<th>Reranking</th>
<th>BLEU</th>
<th>RIBES</th>
<th>HUMAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>J→E</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>21.31 (+0.71)</td>
<td>70.65 (+0.53)</td>
<td>16.50</td>
</tr>
<tr>
<td>YES</td>
<td>22.89 (+1.82)</td>
<td>72.46 (+2.56)</td>
<td>32.50</td>
</tr>
<tr>
<td>E→J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>30.69 (+0.92)</td>
<td>76.78 (+1.57)</td>
<td>40.50</td>
</tr>
<tr>
<td>YES</td>
<td>33.06 (+1.97)</td>
<td>78.95 (+2.99)</td>
<td>51.00</td>
</tr>
<tr>
<td>J→C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>29.99 (+2.78)</td>
<td>80.71 (+1.58)</td>
<td>16.00</td>
</tr>
<tr>
<td>YES</td>
<td>31.40 (+3.83)</td>
<td>82.70 (+3.87)</td>
<td>12.50</td>
</tr>
<tr>
<td>C→J</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NO</td>
<td>36.30 (+2.73)</td>
<td>81.97 (+1.87)</td>
<td>16.75</td>
</tr>
<tr>
<td>YES</td>
<td>38.53 (+3.78)</td>
<td>84.07 (+3.81)</td>
<td>18.50</td>
</tr>
</tbody>
</table>
Code is available and Open-sourced

• Version 1.0 released
 • 1 year after version 0.1
 • 2 years after development started
• Downloadable at: http://nlp.ist.i.kyoto-u.ac.jp/kyotoebmt/
• GPL Licence
Conclusion

• KyotoEBMT is a (Dependency) Tree-to-Tree MT system with state-of-the-art results
• Open-sourced (http://nlp.ist.i.kyoto-u.ac.jp/kyotoebmt/)
• Improvements across the whole pipeline lead us to close to +4 BLEU improvements
• Some future works:
 • Make more use of the target structure
 • Use of deep learning features in the decoder
 • eg. as in (Devlin et al., 2014)
 • ...
Thank you!