Language Analysis

- **English**: Moses tokenizer & Irish parser
- **Japanese**: In-house tokenizer and POS tagger

Tree-to-String Syntax-based SMT

- Use parse tree
- Synchronous context-free grammar (SCFG) rules
- Char parsing decoder with cube pruning

Rule Augmentation

- Known as Syntax-Augmented Machine Translation (Zollmann and Venugopal, 2006)
- Extract more rules by modifying source parse tree
- Given a parse tree, produce additional nodes

Handling OOV

- **Handy on Word Split**
 - Example: nano-laminate → nano laminate

- **Spell Error Correction**
 - Use open-source spell checker, Aspell
 - Correction based on edit distance
 - Select one with the shortest distance among top-3 suggestions

Neural Machine Translation

1. Use target character sequence rather than word sequence
 - Removes the need to replace rare words with the unknown word symbol
 - Simpler than other methods recently proposed to address the same issue

2. Bi-directional representation of target characters
 - Better accuracy in preliminary experiment
 - E.g.,

3. **Modified RNN encoder-decoder**
 - Bi-directional RNN with an attention mechanism (Bahdanau et al., 2015)

 \[\begin{align*}
 h_t &= \text{f}_t(\text{h}_{t-1}, \text{h}_{t+1}) \\
 \text{c}_t &= \sum_{i=1}^{T} \alpha_i \text{c}_{t,i} \\
 \text{c}_{t,i} &= \text{f}_t(\text{h}_{t,i}, \text{h}_{t+1})
 \end{align*} \]

 - New hidden state of the decoder
 - Prob. of next target word

Experimental Results

- **En-Ja SMT**
 - BLEU: 31.34 (290M)
 - #Rules: 19.5K

- **Ko-Ja SMT**
 - BLEU: 70.31 (57M)
 - #Rules: 55M

- **Effect of combination between T2S/PBMT and NMT**
 - NMT outperforms T2S in En-Ja, while it does not outperform PBMT in Ko-Ja
 - NMT reranking give a great benefit between T2S/PBMT and NMT

Ko-Ja Technical Terms

- Word-level PBMT
- Char-level tokenization
- 10-gram LM, max-phrase-len=10

Observation

- Both Ko-Ja technical terms are usually transliterated from the same foreign word
- Char-level PBMT implicitly learns transliteration rules

Japanese Machine Translation System for WAT 2015

Hyoong-Gyu Lee1, Jaesong Lee1, Jun-Seok Kim2 and Chang-Ki Lee2

1NAVER LABS, NAVER Corp. and 2Kangwon National University