A Dependency-to-String Model for Chinese-Japanese SMT System

Hua Shan Lu Bai Te Luo Yujie Zhang
Beijing jiaotong University
(a), (b) and (c) is HDR rules, (d) is H rules

- HDR rules: the source side is generalized HDR fragments and the target side is strings.
- H rules: the source side is a word and the target side is words or strings.
Rule Acquisition

- Tree annotation
 - Annotate the necessary information on each node of dependency trees for translation rule acquisition

- Identification of acceptable HDR fragments
 - Identify HDR fragments from the annotated trees for HDR rules generation

- HDR rules generation
 - Generate a set of HDR rules according to the identified acceptable HDR fragments
Decoding

- **Algorithm**
 - Bottom up chart parsing

- **Goal**
 - Find the best derivation among all possible derivations

- **Procedure**
 - Apply H rules when n is a leaf node
 - Apply HDR rules when n is an internal node
 - Generate the candidate translation for n by cube pruning algorithm
Experiment and Evaluation

- **Chinese processing**
 - Stanford Word Segmenter
 - Stanford Parser
- **Japanese processing**
 - JUMAN
 - SRI Language Modeling Toolkit

<table>
<thead>
<tr>
<th>System</th>
<th>Rule #</th>
<th>BLEU</th>
<th>RIBES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>35M</td>
<td>34.25</td>
<td>78.94</td>
</tr>
<tr>
<td>Ours</td>
<td>8.8M</td>
<td>34.87</td>
<td>79.25</td>
</tr>
</tbody>
</table>

- Baseline: MOSES PBSMT system
- Ours performed better although using only a small size of translation rules
Thank you!