Shiwen Ni


2024

pdf bib
Layer-wise Regularized Dropout for Neural Language Models
Shiwen Ni | Min Yang | Ruifeng Xu | Chengming Li | Xiping Xiping Hu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Among the various pre-trained neural language models that are popular today, dropout is already an indispensable regularization technique. To solve the inconsistency between training and inference caused by the randomness of dropout, some studies use consistency training to regularize dropout at the output layer. In this paper, we propose a novel Layer-wise Regularized Dropout (LR-Drop), which is specially designed for Transformer-based Language models. Specifically, LR-Drop layer-wise regularizes each Transformer layer using the consistency training strategy. Each training sample passes through the two siamese sub-models sampled by dropout, and then LR-Drop forces the hidden states, multi-head attention matrices, and output distribution of the two siamese sub-models to be consistent. The proposed LR-Drop can be regarded as a “self-distillation” framework, in which each sub-model generated by dropout is the other’s “teacher” model and “student” model. Through extensive experiments on 8 natural language understanding datasets, 6 neural machine translation datasets, and 1 abstractive summarization dataset (a total of 15 datasets), we show that LR-Drop achieves superior performances, including state-of-the-art results.

pdf bib
MoZIP: A Multilingual Benchmark to Evaluate Large Language Models in Intellectual Property
Shiwen Ni | Minghuan Tan | Yuelin Bai | Fuqiang Niu | Min Yang | Bowen Zhang | Ruifeng Xu | Xiaojun Chen | Chengming Li | Xiping Hu
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Large language models (LLMs) have demonstrated impressive performance in various natural language processing (NLP) tasks. However, there is limited understanding of how well LLMs perform in specific domains (e.g, the intellectual property (IP) domain). In this paper, we contribute a new benchmark, the first Multilingual-oriented quiZ on Intellectual Property (MoZIP), for the evaluation of LLMs in the IP domain. The MoZIP benchmark includes three challenging tasks: IP multiple-choice quiz (IPQuiz), IP question answering (IPQA), and patent matching (PatentMatch). In addition, we also develop a new IP-oriented multilingual large language model (called MoZi), which is a BLOOMZ-based model that has been supervised fine-tuned with multilingual IP-related text data. We evaluate our proposed MoZi model and four well-known LLMs (i.e., BLOOMZ, BELLE, ChatGLM and ChatGPT) on the MoZIP benchmark. Experimental results demonstrate that MoZi outperforms BLOOMZ, BELLE and ChatGLM by a noticeable margin, while it had lower scores compared with ChatGPT. Notably, the performance of current LLMs on the MoZIP benchmark has much room for improvement, and even the most powerful ChatGPT does not reach the passing level. Our source code, data, and models are available at https://github.com/AI-for-Science/MoZi.

2022

pdf bib
R-AT: Regularized Adversarial Training for Natural Language Understanding
Shiwen Ni | Jiawen Li | Hung-Yu Kao
Findings of the Association for Computational Linguistics: EMNLP 2022

Currently, adversarial training has become a popular and powerful regularization method in the natural language domain. In this paper, we Regularized Adversarial Training (R-AT) via dropout, which forces the output probability distributions of different sub-models generated by dropout to be consistent under the same adversarial samples. Specifically, we generate adversarial samples by perturbing the word embeddings. For each adversarial sample fed to the model, R-AT minimizes both the adversarial risk and the bidirectional KL-divergence between the adversarial output distributions of two sub-models sampled by dropout. Through extensive experiments on 13 public natural language understanding datasets, we found that R-AT has improvements for many models (e.g., rnn-based, cnn-based, and transformer-based models). For the GLUE benchmark, when R-AT is only applied to the fine-tuning stage, it is able to improve the overall test score of the BERT-base model from 78.3 to 79.6 and the RoBERTa-large model from 88.1 to 88.6. Theoretical analysis reveals that R-AT has potential gradient regularization during the training process. Furthermore, R-AT can reduce the inconsistency between training and testing of models with dropout.

2021

pdf bib
Meet The Truth: Leverage Objective Facts and Subjective Views for Interpretable Rumor Detection
Jiawen Li | Shiwen Ni | Hung-Yu Kao
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021