@inproceedings{fung-1998-statistical,
title = "A statistical view on bilingual lexicon extraction",
author = "Fung, Pascale",
editor = "Farwell, David and
Gerber, Laurie and
Hovy, Eduard",
booktitle = "Proceedings of the Third Conference of the Association for Machine Translation in the Americas: Technical Papers",
month = oct # " 28-31",
year = "1998",
address = "Langhorne, PA, USA",
publisher = "Springer",
url = "https://link.springer.com/chapter/10.1007/3-540-49478-2_1",
pages = "1--17",
abstract = "We present two problems for statistically extracting bilingual lexicon: (1) How can noisy parallel corpora be used? (2) How can non-parallel yet comparable corpora be used? We describe our own work and contribution in relaxing the constraint of using only clean parallel corpora. DKvec is a method for extracting bilingual lexicons, from noisy parallel corpora based on arrival distances of words in noisy parallel corpora. Using DKvec on noisy parallel corpora in English/Japanese and English/Chinese, our evaluations show a 55.35{\%} precision from a small corpus and 89.93{\%} precision from a larger corpus. Our major contribution is in the extraction of bilingual lexicon from non-parallel corpora. We present a first such result in this area, from a new method-Convec. Convec is based on context information of a word to be translated.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fung-1998-statistical">
<titleInfo>
<title>A statistical view on bilingual lexicon extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pascale</namePart>
<namePart type="family">Fung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>1998-oct 28-31</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Conference of the Association for Machine Translation in the Americas: Technical Papers</title>
</titleInfo>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Farwell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurie</namePart>
<namePart type="family">Gerber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eduard</namePart>
<namePart type="family">Hovy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Springer</publisher>
<place>
<placeTerm type="text">Langhorne, PA, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present two problems for statistically extracting bilingual lexicon: (1) How can noisy parallel corpora be used? (2) How can non-parallel yet comparable corpora be used? We describe our own work and contribution in relaxing the constraint of using only clean parallel corpora. DKvec is a method for extracting bilingual lexicons, from noisy parallel corpora based on arrival distances of words in noisy parallel corpora. Using DKvec on noisy parallel corpora in English/Japanese and English/Chinese, our evaluations show a 55.35% precision from a small corpus and 89.93% precision from a larger corpus. Our major contribution is in the extraction of bilingual lexicon from non-parallel corpora. We present a first such result in this area, from a new method-Convec. Convec is based on context information of a word to be translated.</abstract>
<identifier type="citekey">fung-1998-statistical</identifier>
<location>
<url>https://link.springer.com/chapter/10.1007/3-540-49478-2_1</url>
</location>
<part>
<date>1998-oct 28-31</date>
<extent unit="page">
<start>1</start>
<end>17</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A statistical view on bilingual lexicon extraction
%A Fung, Pascale
%Y Farwell, David
%Y Gerber, Laurie
%Y Hovy, Eduard
%S Proceedings of the Third Conference of the Association for Machine Translation in the Americas: Technical Papers
%D 1998
%8 oct 28 31
%I Springer
%C Langhorne, PA, USA
%F fung-1998-statistical
%X We present two problems for statistically extracting bilingual lexicon: (1) How can noisy parallel corpora be used? (2) How can non-parallel yet comparable corpora be used? We describe our own work and contribution in relaxing the constraint of using only clean parallel corpora. DKvec is a method for extracting bilingual lexicons, from noisy parallel corpora based on arrival distances of words in noisy parallel corpora. Using DKvec on noisy parallel corpora in English/Japanese and English/Chinese, our evaluations show a 55.35% precision from a small corpus and 89.93% precision from a larger corpus. Our major contribution is in the extraction of bilingual lexicon from non-parallel corpora. We present a first such result in this area, from a new method-Convec. Convec is based on context information of a word to be translated.
%U https://link.springer.com/chapter/10.1007/3-540-49478-2_1
%P 1-17
Markdown (Informal)
[A statistical view on bilingual lexicon extraction](https://link.springer.com/chapter/10.1007/3-540-49478-2_1) (Fung, AMTA 1998)
ACL