@inproceedings{malaise-etal-2009-relevance,
title = "Relevance of {ASR} for the Automatic Generation of Keywords Suggestions for {TV} programs",
author = "Malais{\'e}, V{\'e}ronique and
Gazendam, Luit and
Heeren, Willemijn and
Ordelman, Roeland and
Brugman, Hennie",
editor = "Nazarenko, Adeline and
Poibeau, Thierry",
booktitle = "Actes de la 16{\`e}me conf{\'e}rence sur le Traitement Automatique des Langues Naturelles. Articles courts",
month = jun,
year = "2009",
address = "Senlis, France",
publisher = "ATALA",
url = "https://aclanthology.org/2009.jeptalnrecital-court.34",
pages = "311--320",
abstract = "Semantic access to multimedia content in audiovisual archives is to a large extent dependent on quantity and quality of the metadata, and particularly the content descriptions that are attached to the individual items. However, the manual annotation of collections puts heavy demands on resources. A large number of archives are introducing (semi) automatic annotation techniques for generating and/or enhancing metadata. The NWO funded CATCH-CHOICE project has investigated the extraction of keywords from textual resources related to TV programs to be archived (context documents), in collaboration with the Dutch audiovisual archives, Sound and Vision. This paper investigates the suitability of Automatic Speech Recognition transcripts produced in the CATCH-CHoral project for generating such keywords, which we evaluate against manual annotations of the documents, and against keywords automatically generated from context documents describing the TV programs{'} content.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="malaise-etal-2009-relevance">
<titleInfo>
<title>Relevance of ASR for the Automatic Generation of Keywords Suggestions for TV programs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Véronique</namePart>
<namePart type="family">Malaisé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luit</namePart>
<namePart type="family">Gazendam</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Willemijn</namePart>
<namePart type="family">Heeren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roeland</namePart>
<namePart type="family">Ordelman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hennie</namePart>
<namePart type="family">Brugman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2009-06</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Actes de la 16ème conférence sur le Traitement Automatique des Langues Naturelles. Articles courts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Adeline</namePart>
<namePart type="family">Nazarenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Poibeau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ATALA</publisher>
<place>
<placeTerm type="text">Senlis, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Semantic access to multimedia content in audiovisual archives is to a large extent dependent on quantity and quality of the metadata, and particularly the content descriptions that are attached to the individual items. However, the manual annotation of collections puts heavy demands on resources. A large number of archives are introducing (semi) automatic annotation techniques for generating and/or enhancing metadata. The NWO funded CATCH-CHOICE project has investigated the extraction of keywords from textual resources related to TV programs to be archived (context documents), in collaboration with the Dutch audiovisual archives, Sound and Vision. This paper investigates the suitability of Automatic Speech Recognition transcripts produced in the CATCH-CHoral project for generating such keywords, which we evaluate against manual annotations of the documents, and against keywords automatically generated from context documents describing the TV programs’ content.</abstract>
<identifier type="citekey">malaise-etal-2009-relevance</identifier>
<location>
<url>https://aclanthology.org/2009.jeptalnrecital-court.34</url>
</location>
<part>
<date>2009-06</date>
<extent unit="page">
<start>311</start>
<end>320</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Relevance of ASR for the Automatic Generation of Keywords Suggestions for TV programs
%A Malaisé, Véronique
%A Gazendam, Luit
%A Heeren, Willemijn
%A Ordelman, Roeland
%A Brugman, Hennie
%Y Nazarenko, Adeline
%Y Poibeau, Thierry
%S Actes de la 16ème conférence sur le Traitement Automatique des Langues Naturelles. Articles courts
%D 2009
%8 June
%I ATALA
%C Senlis, France
%F malaise-etal-2009-relevance
%X Semantic access to multimedia content in audiovisual archives is to a large extent dependent on quantity and quality of the metadata, and particularly the content descriptions that are attached to the individual items. However, the manual annotation of collections puts heavy demands on resources. A large number of archives are introducing (semi) automatic annotation techniques for generating and/or enhancing metadata. The NWO funded CATCH-CHOICE project has investigated the extraction of keywords from textual resources related to TV programs to be archived (context documents), in collaboration with the Dutch audiovisual archives, Sound and Vision. This paper investigates the suitability of Automatic Speech Recognition transcripts produced in the CATCH-CHoral project for generating such keywords, which we evaluate against manual annotations of the documents, and against keywords automatically generated from context documents describing the TV programs’ content.
%U https://aclanthology.org/2009.jeptalnrecital-court.34
%P 311-320
Markdown (Informal)
[Relevance of ASR for the Automatic Generation of Keywords Suggestions for TV programs](https://aclanthology.org/2009.jeptalnrecital-court.34) (Malaisé et al., JEP/TALN/RECITAL 2009)
ACL