@inproceedings{baker-etal-2010-semantically,
title = "Semantically-Informed Syntactic Machine Translation: A Tree-Grafting Approach",
author = "Baker, Kathryn and
Bloodgood, Michael and
Callison-Burch, Chris and
Dorr, Bonnie and
Filardo, Nathaniel and
Levin, Lori and
Miller, Scott and
Piatko, Christine",
booktitle = "Proceedings of the 9th Conference of the Association for Machine Translation in the Americas: Research Papers",
month = oct # " 31-" # nov # " 4",
year = "2010",
address = "Denver, Colorado, USA",
publisher = "Association for Machine Translation in the Americas",
url = "https://aclanthology.org/2010.amta-papers.7",
abstract = "We describe a unified and coherent syntactic framework for supporting a semantically-informed syntactic approach to statistical machine translation. Semantically enriched syntactic tags assigned to the target-language training texts improved translation quality. The resulting system significantly outperformed a linguistically naive baseline model (Hiero), and reached the highest scores yet reported on the NIST 2009 Urdu-English translation task. This finding supports the hypothesis (posed by many researchers in the MT community, e.g., in DARPA GALE) that both syntactic and semantic information are critical for improving translation quality{---}and further demonstrates that large gains can be achieved for low-resource languages with different word order than English.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="baker-etal-2010-semantically">
<titleInfo>
<title>Semantically-Informed Syntactic Machine Translation: A Tree-Grafting Approach</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kathryn</namePart>
<namePart type="family">Baker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Bloodgood</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Callison-Burch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bonnie</namePart>
<namePart type="family">Dorr</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathaniel</namePart>
<namePart type="family">Filardo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lori</namePart>
<namePart type="family">Levin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Scott</namePart>
<namePart type="family">Miller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christine</namePart>
<namePart type="family">Piatko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2010-oct 31-nov 4</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Conference of the Association for Machine Translation in the Americas: Research Papers</title>
</titleInfo>
<originInfo>
<publisher>Association for Machine Translation in the Americas</publisher>
<place>
<placeTerm type="text">Denver, Colorado, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We describe a unified and coherent syntactic framework for supporting a semantically-informed syntactic approach to statistical machine translation. Semantically enriched syntactic tags assigned to the target-language training texts improved translation quality. The resulting system significantly outperformed a linguistically naive baseline model (Hiero), and reached the highest scores yet reported on the NIST 2009 Urdu-English translation task. This finding supports the hypothesis (posed by many researchers in the MT community, e.g., in DARPA GALE) that both syntactic and semantic information are critical for improving translation quality—and further demonstrates that large gains can be achieved for low-resource languages with different word order than English.</abstract>
<identifier type="citekey">baker-etal-2010-semantically</identifier>
<location>
<url>https://aclanthology.org/2010.amta-papers.7</url>
</location>
<part>
<date>2010-oct 31-nov 4</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantically-Informed Syntactic Machine Translation: A Tree-Grafting Approach
%A Baker, Kathryn
%A Bloodgood, Michael
%A Callison-Burch, Chris
%A Dorr, Bonnie
%A Filardo, Nathaniel
%A Levin, Lori
%A Miller, Scott
%A Piatko, Christine
%S Proceedings of the 9th Conference of the Association for Machine Translation in the Americas: Research Papers
%D 2010
%8 oct 31 nov 4
%I Association for Machine Translation in the Americas
%C Denver, Colorado, USA
%F baker-etal-2010-semantically
%X We describe a unified and coherent syntactic framework for supporting a semantically-informed syntactic approach to statistical machine translation. Semantically enriched syntactic tags assigned to the target-language training texts improved translation quality. The resulting system significantly outperformed a linguistically naive baseline model (Hiero), and reached the highest scores yet reported on the NIST 2009 Urdu-English translation task. This finding supports the hypothesis (posed by many researchers in the MT community, e.g., in DARPA GALE) that both syntactic and semantic information are critical for improving translation quality—and further demonstrates that large gains can be achieved for low-resource languages with different word order than English.
%U https://aclanthology.org/2010.amta-papers.7
Markdown (Informal)
[Semantically-Informed Syntactic Machine Translation: A Tree-Grafting Approach](https://aclanthology.org/2010.amta-papers.7) (Baker et al., AMTA 2010)
ACL
- Kathryn Baker, Michael Bloodgood, Chris Callison-Burch, Bonnie Dorr, Nathaniel Filardo, Lori Levin, Scott Miller, and Christine Piatko. 2010. Semantically-Informed Syntactic Machine Translation: A Tree-Grafting Approach. In Proceedings of the 9th Conference of the Association for Machine Translation in the Americas: Research Papers, Denver, Colorado, USA. Association for Machine Translation in the Americas.