@inproceedings{lavergne-etal-2011-limsis,
title = "{LIMSI}{'}s experiments in domain adaptation for {IWSLT}11",
author = "Lavergne, Thomas and
Allauzen, Alexandre and
Le, Hai-Son and
Yvon, Fran{\c{c}}ois",
editor = {Federico, Marcello and
Hwang, Mei-Yuh and
R{\"o}dder, Margit and
St{\"u}ker, Sebastian},
booktitle = "Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign",
month = dec # " 8-9",
year = "2011",
address = "San Francisco, California",
url = "https://aclanthology.org/2011.iwslt-evaluation.7",
pages = "62--67",
abstract = "LIMSI took part in the IWSLT 2011 TED task in the MT track for English to French using the in-house n-code system, which implements the n-gram based approach to Machine Translation. This framework not only allows to achieve state-of-the-art results for this language pair, but is also appealing due to its conceptual simplicity and its use of well understood statistical language models. Using this approach, we compare several ways to adapt our existing systems and resources to the TED task with mixture of language models and try to provide an analysis of the modest gains obtained by training a log linear combination of inand out-of-domain models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lavergne-etal-2011-limsis">
<titleInfo>
<title>LIMSI’s experiments in domain adaptation for IWSLT11</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Lavergne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Allauzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hai-Son</namePart>
<namePart type="family">Le</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">François</namePart>
<namePart type="family">Yvon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2011-dec 8-9</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mei-Yuh</namePart>
<namePart type="family">Hwang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Margit</namePart>
<namePart type="family">Rödder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Stüker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<place>
<placeTerm type="text">San Francisco, California</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>LIMSI took part in the IWSLT 2011 TED task in the MT track for English to French using the in-house n-code system, which implements the n-gram based approach to Machine Translation. This framework not only allows to achieve state-of-the-art results for this language pair, but is also appealing due to its conceptual simplicity and its use of well understood statistical language models. Using this approach, we compare several ways to adapt our existing systems and resources to the TED task with mixture of language models and try to provide an analysis of the modest gains obtained by training a log linear combination of inand out-of-domain models.</abstract>
<identifier type="citekey">lavergne-etal-2011-limsis</identifier>
<location>
<url>https://aclanthology.org/2011.iwslt-evaluation.7</url>
</location>
<part>
<date>2011-dec 8-9</date>
<extent unit="page">
<start>62</start>
<end>67</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T LIMSI’s experiments in domain adaptation for IWSLT11
%A Lavergne, Thomas
%A Allauzen, Alexandre
%A Le, Hai-Son
%A Yvon, François
%Y Federico, Marcello
%Y Hwang, Mei-Yuh
%Y Rödder, Margit
%Y Stüker, Sebastian
%S Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign
%D 2011
%8 dec 8 9
%C San Francisco, California
%F lavergne-etal-2011-limsis
%X LIMSI took part in the IWSLT 2011 TED task in the MT track for English to French using the in-house n-code system, which implements the n-gram based approach to Machine Translation. This framework not only allows to achieve state-of-the-art results for this language pair, but is also appealing due to its conceptual simplicity and its use of well understood statistical language models. Using this approach, we compare several ways to adapt our existing systems and resources to the TED task with mixture of language models and try to provide an analysis of the modest gains obtained by training a log linear combination of inand out-of-domain models.
%U https://aclanthology.org/2011.iwslt-evaluation.7
%P 62-67
Markdown (Informal)
[LIMSI’s experiments in domain adaptation for IWSLT11](https://aclanthology.org/2011.iwslt-evaluation.7) (Lavergne et al., IWSLT 2011)
ACL
- Thomas Lavergne, Alexandre Allauzen, Hai-Son Le, and François Yvon. 2011. LIMSI’s experiments in domain adaptation for IWSLT11. In Proceedings of the 8th International Workshop on Spoken Language Translation: Evaluation Campaign, pages 62–67, San Francisco, California.