@inproceedings{sharma-bhattacharyya-2016-high,
title = "High, Medium or Low? Detecting Intensity Variation Among polar synonyms in {W}ord{N}et",
author = "Sharma, Raksha and
Bhattacharyya, Pushpak",
editor = "Fellbaum, Christiane and
Vossen, Piek and
Mititelu, Verginica Barbu and
Forascu, Corina",
booktitle = "Proceedings of the 8th Global WordNet Conference (GWC)",
month = "27--30 " # jan,
year = "2016",
address = "Bucharest, Romania",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2016.gwc-1.54/",
pages = "389--395",
abstract = "For fine-grained sentiment analysis, we need to go beyond zero-one polarity and find a way to compare adjectives (synonyms) that share the same sense. Choice of a word from a set of synonyms, provides a way to select the exact polarity-intensity. For example, choosing to describe a person as benevolent rather than kind1 changes the intensity of the expression. In this paper, we present a sense based lexical resource, where synonyms are assigned intensity levels, viz., high, medium and low. We show that the measure P (s|w) (probability of a sense s given the word w) can derive the intensity of a word within the sense. We observe a statistically significant positive correlation between P(s|w) and intensity of synonyms for three languages, viz., English, Marathi and Hindi. The average correlation scores are 0.47 for English, 0.56 for Marathi and 0.58 for Hindi."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sharma-bhattacharyya-2016-high">
<titleInfo>
<title>High, Medium or Low? Detecting Intensity Variation Among polar synonyms in WordNet</title>
</titleInfo>
<name type="personal">
<namePart type="given">Raksha</namePart>
<namePart type="family">Sharma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pushpak</namePart>
<namePart type="family">Bhattacharyya</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-27–30 jan</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Global WordNet Conference (GWC)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Christiane</namePart>
<namePart type="family">Fellbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piek</namePart>
<namePart type="family">Vossen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Verginica</namePart>
<namePart type="given">Barbu</namePart>
<namePart type="family">Mititelu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Corina</namePart>
<namePart type="family">Forascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">Bucharest, Romania</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>For fine-grained sentiment analysis, we need to go beyond zero-one polarity and find a way to compare adjectives (synonyms) that share the same sense. Choice of a word from a set of synonyms, provides a way to select the exact polarity-intensity. For example, choosing to describe a person as benevolent rather than kind1 changes the intensity of the expression. In this paper, we present a sense based lexical resource, where synonyms are assigned intensity levels, viz., high, medium and low. We show that the measure P (s|w) (probability of a sense s given the word w) can derive the intensity of a word within the sense. We observe a statistically significant positive correlation between P(s|w) and intensity of synonyms for three languages, viz., English, Marathi and Hindi. The average correlation scores are 0.47 for English, 0.56 for Marathi and 0.58 for Hindi.</abstract>
<identifier type="citekey">sharma-bhattacharyya-2016-high</identifier>
<location>
<url>https://aclanthology.org/2016.gwc-1.54/</url>
</location>
<part>
<date>2016-27–30 jan</date>
<extent unit="page">
<start>389</start>
<end>395</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T High, Medium or Low? Detecting Intensity Variation Among polar synonyms in WordNet
%A Sharma, Raksha
%A Bhattacharyya, Pushpak
%Y Fellbaum, Christiane
%Y Vossen, Piek
%Y Mititelu, Verginica Barbu
%Y Forascu, Corina
%S Proceedings of the 8th Global WordNet Conference (GWC)
%D 2016
%8 27–30 jan
%I Global Wordnet Association
%C Bucharest, Romania
%F sharma-bhattacharyya-2016-high
%X For fine-grained sentiment analysis, we need to go beyond zero-one polarity and find a way to compare adjectives (synonyms) that share the same sense. Choice of a word from a set of synonyms, provides a way to select the exact polarity-intensity. For example, choosing to describe a person as benevolent rather than kind1 changes the intensity of the expression. In this paper, we present a sense based lexical resource, where synonyms are assigned intensity levels, viz., high, medium and low. We show that the measure P (s|w) (probability of a sense s given the word w) can derive the intensity of a word within the sense. We observe a statistically significant positive correlation between P(s|w) and intensity of synonyms for three languages, viz., English, Marathi and Hindi. The average correlation scores are 0.47 for English, 0.56 for Marathi and 0.58 for Hindi.
%U https://aclanthology.org/2016.gwc-1.54/
%P 389-395
Markdown (Informal)
[High, Medium or Low? Detecting Intensity Variation Among polar synonyms in WordNet](https://aclanthology.org/2016.gwc-1.54/) (Sharma & Bhattacharyya, GWC 2016)
ACL