@inproceedings{junczys-dowmunt-etal-2016-neural,
title = "Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions",
author = "Junczys-Dowmunt, Marcin and
Dwojak, Tomasz and
Hoang, Hieu",
editor = {Cettolo, Mauro and
Niehues, Jan and
St{\"u}ker, Sebastian and
Bentivogli, Luisa and
Cattoni, Rolando and
Federico, Marcello},
booktitle = "Proceedings of the 13th International Conference on Spoken Language Translation",
month = dec # " 8-9",
year = "2016",
address = "Seattle, Washington D.C",
publisher = "International Workshop on Spoken Language Translation",
url = "https://aclanthology.org/2016.iwslt-1.5",
abstract = "In this paper we provide the largest published comparison of translation quality for phrase-based SMT and neural machine translation across 30 translation directions. For ten directions we also include hierarchical phrase-based MT. Experiments are performed for the recently published United Nations Parallel Corpus v1.0 and its large six-way sentence-aligned subcorpus. In the second part of the paper we investigate aspects of translation speed, introducing AmuNMT, our efficient neural machine translation decoder. We demonstrate that current neural machine translation could already be used for in-production systems when comparing words-persecond ratios.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="junczys-dowmunt-etal-2016-neural">
<titleInfo>
<title>Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marcin</namePart>
<namePart type="family">Junczys-Dowmunt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tomasz</namePart>
<namePart type="family">Dwojak</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hieu</namePart>
<namePart type="family">Hoang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2016-dec 8-9</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 13th International Conference on Spoken Language Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mauro</namePart>
<namePart type="family">Cettolo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Niehues</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Stüker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luisa</namePart>
<namePart type="family">Bentivogli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rolando</namePart>
<namePart type="family">Cattoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcello</namePart>
<namePart type="family">Federico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Workshop on Spoken Language Translation</publisher>
<place>
<placeTerm type="text">Seattle, Washington D.C</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we provide the largest published comparison of translation quality for phrase-based SMT and neural machine translation across 30 translation directions. For ten directions we also include hierarchical phrase-based MT. Experiments are performed for the recently published United Nations Parallel Corpus v1.0 and its large six-way sentence-aligned subcorpus. In the second part of the paper we investigate aspects of translation speed, introducing AmuNMT, our efficient neural machine translation decoder. We demonstrate that current neural machine translation could already be used for in-production systems when comparing words-persecond ratios.</abstract>
<identifier type="citekey">junczys-dowmunt-etal-2016-neural</identifier>
<location>
<url>https://aclanthology.org/2016.iwslt-1.5</url>
</location>
<part>
<date>2016-dec 8-9</date>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions
%A Junczys-Dowmunt, Marcin
%A Dwojak, Tomasz
%A Hoang, Hieu
%Y Cettolo, Mauro
%Y Niehues, Jan
%Y Stüker, Sebastian
%Y Bentivogli, Luisa
%Y Cattoni, Rolando
%Y Federico, Marcello
%S Proceedings of the 13th International Conference on Spoken Language Translation
%D 2016
%8 dec 8 9
%I International Workshop on Spoken Language Translation
%C Seattle, Washington D.C
%F junczys-dowmunt-etal-2016-neural
%X In this paper we provide the largest published comparison of translation quality for phrase-based SMT and neural machine translation across 30 translation directions. For ten directions we also include hierarchical phrase-based MT. Experiments are performed for the recently published United Nations Parallel Corpus v1.0 and its large six-way sentence-aligned subcorpus. In the second part of the paper we investigate aspects of translation speed, introducing AmuNMT, our efficient neural machine translation decoder. We demonstrate that current neural machine translation could already be used for in-production systems when comparing words-persecond ratios.
%U https://aclanthology.org/2016.iwslt-1.5
Markdown (Informal)
[Is Neural Machine Translation Ready for Deployment? A Case Study on 30 Translation Directions](https://aclanthology.org/2016.iwslt-1.5) (Junczys-Dowmunt et al., IWSLT 2016)
ACL