@inproceedings{vanmassenhove-hardmeier-2018-europarl,
title = "{E}uroparl Datasets with Demographic Speaker Information",
author = "Vanmassenhove, Eva and
Hardmeier, Christian",
editor = "P{\'e}rez-Ortiz, Juan Antonio and
S{\'a}nchez-Mart{\'\i}nez, Felipe and
Espl{\`a}-Gomis, Miquel and
Popovi{\'c}, Maja and
Rico, Celia and
Martins, Andr{\'e} and
Van den Bogaert, Joachim and
Forcada, Mikel L.",
booktitle = "Proceedings of the 21st Annual Conference of the European Association for Machine Translation",
month = may,
year = "2018",
address = "Alicante, Spain",
url = "https://aclanthology.org/2018.eamt-main.59",
pages = "391",
abstract = "Research on speaker-adapted neural machine translation (NMT) is scarce. One of the main challenges for more personalized MT systems is finding large enough annotated parallel datasets with speaker information. Rabinovich et al. (2017) published an annotated parallel dataset for EN{--}FR and EN{--}DE, however, for many other language pairs no sufficiently large annotated datasets are available.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vanmassenhove-hardmeier-2018-europarl">
<titleInfo>
<title>Europarl Datasets with Demographic Speaker Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eva</namePart>
<namePart type="family">Vanmassenhove</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 21st Annual Conference of the European Association for Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Juan</namePart>
<namePart type="given">Antonio</namePart>
<namePart type="family">Pérez-Ortiz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felipe</namePart>
<namePart type="family">Sánchez-Martínez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miquel</namePart>
<namePart type="family">Esplà-Gomis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maja</namePart>
<namePart type="family">Popović</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Celia</namePart>
<namePart type="family">Rico</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">André</namePart>
<namePart type="family">Martins</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joachim</namePart>
<namePart type="family">Van den Bogaert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="given">L</namePart>
<namePart type="family">Forcada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<place>
<placeTerm type="text">Alicante, Spain</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Research on speaker-adapted neural machine translation (NMT) is scarce. One of the main challenges for more personalized MT systems is finding large enough annotated parallel datasets with speaker information. Rabinovich et al. (2017) published an annotated parallel dataset for EN–FR and EN–DE, however, for many other language pairs no sufficiently large annotated datasets are available.</abstract>
<identifier type="citekey">vanmassenhove-hardmeier-2018-europarl</identifier>
<location>
<url>https://aclanthology.org/2018.eamt-main.59</url>
</location>
<part>
<date>2018-05</date>
<detail type="page"><number>391</number></detail>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Europarl Datasets with Demographic Speaker Information
%A Vanmassenhove, Eva
%A Hardmeier, Christian
%Y Pérez-Ortiz, Juan Antonio
%Y Sánchez-Martínez, Felipe
%Y Esplà-Gomis, Miquel
%Y Popović, Maja
%Y Rico, Celia
%Y Martins, André
%Y Van den Bogaert, Joachim
%Y Forcada, Mikel L.
%S Proceedings of the 21st Annual Conference of the European Association for Machine Translation
%D 2018
%8 May
%C Alicante, Spain
%F vanmassenhove-hardmeier-2018-europarl
%X Research on speaker-adapted neural machine translation (NMT) is scarce. One of the main challenges for more personalized MT systems is finding large enough annotated parallel datasets with speaker information. Rabinovich et al. (2017) published an annotated parallel dataset for EN–FR and EN–DE, however, for many other language pairs no sufficiently large annotated datasets are available.
%U https://aclanthology.org/2018.eamt-main.59
%P 391
Markdown (Informal)
[Europarl Datasets with Demographic Speaker Information](https://aclanthology.org/2018.eamt-main.59) (Vanmassenhove & Hardmeier, EAMT 2018)
ACL