@inproceedings{piasecki-etal-2018-wordnet,
title = "{W}ordnet-based Evaluation of Large Distributional Models for {P}olish",
author = "Piasecki, Maciej and
Czachor, Gabriela and
Janz, Arkadiusz and
Kaszewski, Dominik and
K{\k{e}}dzia, Pawe{\l}",
editor = "Bond, Francis and
Vossen, Piek and
Fellbaum, Christiane",
booktitle = "Proceedings of the 9th Global Wordnet Conference",
month = jan,
year = "2018",
address = "Nanyang Technological University (NTU), Singapore",
publisher = "Global Wordnet Association",
url = "https://aclanthology.org/2018.gwc-1.26/",
pages = "229--238",
abstract = "The paper presents construction of large scale test datasets for word embeddings on the basis of a very large wordnet. They were next applied for evaluation of word embedding models and used to assess and compare the usefulness of different word embeddings extracted from a very large corpus of Polish. We analysed also and compared several publicly available models described in literature. In addition, several large word embeddings models built on the basis of a very large Polish corpus are presented."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="piasecki-etal-2018-wordnet">
<titleInfo>
<title>Wordnet-based Evaluation of Large Distributional Models for Polish</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maciej</namePart>
<namePart type="family">Piasecki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gabriela</namePart>
<namePart type="family">Czachor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arkadiusz</namePart>
<namePart type="family">Janz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dominik</namePart>
<namePart type="family">Kaszewski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paweł</namePart>
<namePart type="family">Kędzia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-01</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Global Wordnet Conference</title>
</titleInfo>
<name type="personal">
<namePart type="given">Francis</namePart>
<namePart type="family">Bond</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Piek</namePart>
<namePart type="family">Vossen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christiane</namePart>
<namePart type="family">Fellbaum</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Global Wordnet Association</publisher>
<place>
<placeTerm type="text">Nanyang Technological University (NTU), Singapore</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The paper presents construction of large scale test datasets for word embeddings on the basis of a very large wordnet. They were next applied for evaluation of word embedding models and used to assess and compare the usefulness of different word embeddings extracted from a very large corpus of Polish. We analysed also and compared several publicly available models described in literature. In addition, several large word embeddings models built on the basis of a very large Polish corpus are presented.</abstract>
<identifier type="citekey">piasecki-etal-2018-wordnet</identifier>
<location>
<url>https://aclanthology.org/2018.gwc-1.26/</url>
</location>
<part>
<date>2018-01</date>
<extent unit="page">
<start>229</start>
<end>238</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Wordnet-based Evaluation of Large Distributional Models for Polish
%A Piasecki, Maciej
%A Czachor, Gabriela
%A Janz, Arkadiusz
%A Kaszewski, Dominik
%A Kędzia, Paweł
%Y Bond, Francis
%Y Vossen, Piek
%Y Fellbaum, Christiane
%S Proceedings of the 9th Global Wordnet Conference
%D 2018
%8 January
%I Global Wordnet Association
%C Nanyang Technological University (NTU), Singapore
%F piasecki-etal-2018-wordnet
%X The paper presents construction of large scale test datasets for word embeddings on the basis of a very large wordnet. They were next applied for evaluation of word embedding models and used to assess and compare the usefulness of different word embeddings extracted from a very large corpus of Polish. We analysed also and compared several publicly available models described in literature. In addition, several large word embeddings models built on the basis of a very large Polish corpus are presented.
%U https://aclanthology.org/2018.gwc-1.26/
%P 229-238
Markdown (Informal)
[Wordnet-based Evaluation of Large Distributional Models for Polish](https://aclanthology.org/2018.gwc-1.26/) (Piasecki et al., GWC 2018)
ACL