@inproceedings{gari-soler-etal-2018-comparative,
title = "A comparative study of word embeddings and other features for lexical complexity detection in {F}rench",
author = "Gar{\'i} Soler, Aina and
Apidianaki, Marianna and
Allauzen, Alexandre",
editor = "S{\'e}billot, Pascale and
Claveau, Vincent",
booktitle = "Actes de la Conf{\'e}rence TALN. Volume 1 - Articles longs, articles courts de TALN",
month = "5",
year = "2018",
address = "Rennes, France",
publisher = "ATALA",
url = "https://aclanthology.org/2018.jeptalnrecital-court.34/",
pages = "499--508",
abstract = "Lexical complexity detection is an important step for automatic text simplification which serves to make informed lexical substitutions. In this study, we experiment with word embeddings for measuring the complexity of French words and combine them with other features that have been shown to be well-suited for complexity prediction. Our results on a synonym ranking task show that embeddings perform better than other features in isolation, but do not outperform frequency-based systems in this language."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="gari-soler-etal-2018-comparative">
<titleInfo>
<title>A comparative study of word embeddings and other features for lexical complexity detection in French</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aina</namePart>
<namePart type="family">Garí Soler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexandre</namePart>
<namePart type="family">Allauzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN</title>
</titleInfo>
<name type="personal">
<namePart type="given">Pascale</namePart>
<namePart type="family">Sébillot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Claveau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>ATALA</publisher>
<place>
<placeTerm type="text">Rennes, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Lexical complexity detection is an important step for automatic text simplification which serves to make informed lexical substitutions. In this study, we experiment with word embeddings for measuring the complexity of French words and combine them with other features that have been shown to be well-suited for complexity prediction. Our results on a synonym ranking task show that embeddings perform better than other features in isolation, but do not outperform frequency-based systems in this language.</abstract>
<identifier type="citekey">gari-soler-etal-2018-comparative</identifier>
<location>
<url>https://aclanthology.org/2018.jeptalnrecital-court.34/</url>
</location>
<part>
<date>2018-5</date>
<extent unit="page">
<start>499</start>
<end>508</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A comparative study of word embeddings and other features for lexical complexity detection in French
%A Garí Soler, Aina
%A Apidianaki, Marianna
%A Allauzen, Alexandre
%Y Sébillot, Pascale
%Y Claveau, Vincent
%S Actes de la Conférence TALN. Volume 1 - Articles longs, articles courts de TALN
%D 2018
%8 May
%I ATALA
%C Rennes, France
%F gari-soler-etal-2018-comparative
%X Lexical complexity detection is an important step for automatic text simplification which serves to make informed lexical substitutions. In this study, we experiment with word embeddings for measuring the complexity of French words and combine them with other features that have been shown to be well-suited for complexity prediction. Our results on a synonym ranking task show that embeddings perform better than other features in isolation, but do not outperform frequency-based systems in this language.
%U https://aclanthology.org/2018.jeptalnrecital-court.34/
%P 499-508
Markdown (Informal)
[A comparative study of word embeddings and other features for lexical complexity detection in French](https://aclanthology.org/2018.jeptalnrecital-court.34/) (Garí Soler et al., JEP/TALN/RECITAL 2018)
ACL