@inproceedings{liao-etal-2020-explaining,
title = "Explaining Word Embeddings via Disentangled Representation",
author = "Liao, Keng-Te and
Lee, Cheng-Syuan and
Huang, Zhong-Yu and
Lin, Shou-de",
editor = "Wong, Kam-Fai and
Knight, Kevin and
Wu, Hua",
booktitle = "Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing",
month = dec,
year = "2020",
address = "Suzhou, China",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.aacl-main.72",
pages = "720--725",
abstract = "Disentangled representations have attracted increasing attention recently. However, how to transfer the desired properties of disentanglement to word representations is unclear. In this work, we propose to transform typical dense word vectors into disentangled embeddings featuring improved interpretability via encoding polysemous semantics separately. We also found the modular structure of our disentangled word embeddings helps generate more efficient and effective features for natural language processing tasks.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liao-etal-2020-explaining">
<titleInfo>
<title>Explaining Word Embeddings via Disentangled Representation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Keng-Te</namePart>
<namePart type="family">Liao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheng-Syuan</namePart>
<namePart type="family">Lee</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhong-Yu</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shou-de</namePart>
<namePart type="family">Lin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kam-Fai</namePart>
<namePart type="family">Wong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Knight</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hua</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Suzhou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Disentangled representations have attracted increasing attention recently. However, how to transfer the desired properties of disentanglement to word representations is unclear. In this work, we propose to transform typical dense word vectors into disentangled embeddings featuring improved interpretability via encoding polysemous semantics separately. We also found the modular structure of our disentangled word embeddings helps generate more efficient and effective features for natural language processing tasks.</abstract>
<identifier type="citekey">liao-etal-2020-explaining</identifier>
<location>
<url>https://aclanthology.org/2020.aacl-main.72</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>720</start>
<end>725</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Explaining Word Embeddings via Disentangled Representation
%A Liao, Keng-Te
%A Lee, Cheng-Syuan
%A Huang, Zhong-Yu
%A Lin, Shou-de
%Y Wong, Kam-Fai
%Y Knight, Kevin
%Y Wu, Hua
%S Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing
%D 2020
%8 December
%I Association for Computational Linguistics
%C Suzhou, China
%F liao-etal-2020-explaining
%X Disentangled representations have attracted increasing attention recently. However, how to transfer the desired properties of disentanglement to word representations is unclear. In this work, we propose to transform typical dense word vectors into disentangled embeddings featuring improved interpretability via encoding polysemous semantics separately. We also found the modular structure of our disentangled word embeddings helps generate more efficient and effective features for natural language processing tasks.
%U https://aclanthology.org/2020.aacl-main.72
%P 720-725
Markdown (Informal)
[Explaining Word Embeddings via Disentangled Representation](https://aclanthology.org/2020.aacl-main.72) (Liao et al., AACL 2020)
ACL
- Keng-Te Liao, Cheng-Syuan Lee, Zhong-Yu Huang, and Shou-de Lin. 2020. Explaining Word Embeddings via Disentangled Representation. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing, pages 720–725, Suzhou, China. Association for Computational Linguistics.