@inproceedings{geng-etal-2020-dynamic,
title = "Dynamic Memory Induction Networks for Few-Shot Text Classification",
author = "Geng, Ruiying and
Li, Binhua and
Li, Yongbin and
Sun, Jian and
Zhu, Xiaodan",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.102",
doi = "10.18653/v1/2020.acl-main.102",
pages = "1087--1094",
abstract = "This paper proposes Dynamic Memory Induction Networks (DMIN) for few-short text classification. The model develops a dynamic routing mechanism over static memory, enabling it to better adapt to unseen classes, a critical capability for few-short classification. The model also expands the induction process with supervised learning weights and query information to enhance the generalization ability of meta-learning. The proposed model brings forward the state-of-the-art performance significantly by 2 4{\%} improvement on the miniRCV1 and ODIC datasets. Detailed analysis is further performed to show how the proposed network achieves the new performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="geng-etal-2020-dynamic">
<titleInfo>
<title>Dynamic Memory Induction Networks for Few-Shot Text Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruiying</namePart>
<namePart type="family">Geng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Binhua</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yongbin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jian</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaodan</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes Dynamic Memory Induction Networks (DMIN) for few-short text classification. The model develops a dynamic routing mechanism over static memory, enabling it to better adapt to unseen classes, a critical capability for few-short classification. The model also expands the induction process with supervised learning weights and query information to enhance the generalization ability of meta-learning. The proposed model brings forward the state-of-the-art performance significantly by 2 4% improvement on the miniRCV1 and ODIC datasets. Detailed analysis is further performed to show how the proposed network achieves the new performance.</abstract>
<identifier type="citekey">geng-etal-2020-dynamic</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.102</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.102</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>1087</start>
<end>1094</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dynamic Memory Induction Networks for Few-Shot Text Classification
%A Geng, Ruiying
%A Li, Binhua
%A Li, Yongbin
%A Sun, Jian
%A Zhu, Xiaodan
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F geng-etal-2020-dynamic
%X This paper proposes Dynamic Memory Induction Networks (DMIN) for few-short text classification. The model develops a dynamic routing mechanism over static memory, enabling it to better adapt to unseen classes, a critical capability for few-short classification. The model also expands the induction process with supervised learning weights and query information to enhance the generalization ability of meta-learning. The proposed model brings forward the state-of-the-art performance significantly by 2 4% improvement on the miniRCV1 and ODIC datasets. Detailed analysis is further performed to show how the proposed network achieves the new performance.
%R 10.18653/v1/2020.acl-main.102
%U https://aclanthology.org/2020.acl-main.102
%U https://doi.org/10.18653/v1/2020.acl-main.102
%P 1087-1094
Markdown (Informal)
[Dynamic Memory Induction Networks for Few-Shot Text Classification](https://aclanthology.org/2020.acl-main.102) (Geng et al., ACL 2020)
ACL