@inproceedings{zhao-etal-2020-relaxed,
title = "A Relaxed Matching Procedure for Unsupervised {BLI}",
author = "Zhao, Xu and
Wang, Zihao and
Zhang, Yong and
Wu, Hao",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.274/",
doi = "10.18653/v1/2020.acl-main.274",
pages = "3036--3041",
abstract = "Recently unsupervised Bilingual Lexicon Induction(BLI) without any parallel corpus has attracted much research interest. One of the crucial parts in methods for the BLI task is the matching procedure. Previous works impose a too strong constraint on the matching and lead to many counterintuitive translation pairings. Thus We propose a relaxed matching procedure to find a more precise matching between two languages. We also find that aligning source and target language embedding space bidirectionally will bring significant improvement. We follow the previous iterative framework to conduct experiments. Results on standard benchmark demonstrate the effectiveness of our proposed method, which substantially outperforms previous unsupervised methods."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhao-etal-2020-relaxed">
<titleInfo>
<title>A Relaxed Matching Procedure for Unsupervised BLI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Xu</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zihao</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently unsupervised Bilingual Lexicon Induction(BLI) without any parallel corpus has attracted much research interest. One of the crucial parts in methods for the BLI task is the matching procedure. Previous works impose a too strong constraint on the matching and lead to many counterintuitive translation pairings. Thus We propose a relaxed matching procedure to find a more precise matching between two languages. We also find that aligning source and target language embedding space bidirectionally will bring significant improvement. We follow the previous iterative framework to conduct experiments. Results on standard benchmark demonstrate the effectiveness of our proposed method, which substantially outperforms previous unsupervised methods.</abstract>
<identifier type="citekey">zhao-etal-2020-relaxed</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.274</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.274/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>3036</start>
<end>3041</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Relaxed Matching Procedure for Unsupervised BLI
%A Zhao, Xu
%A Wang, Zihao
%A Zhang, Yong
%A Wu, Hao
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F zhao-etal-2020-relaxed
%X Recently unsupervised Bilingual Lexicon Induction(BLI) without any parallel corpus has attracted much research interest. One of the crucial parts in methods for the BLI task is the matching procedure. Previous works impose a too strong constraint on the matching and lead to many counterintuitive translation pairings. Thus We propose a relaxed matching procedure to find a more precise matching between two languages. We also find that aligning source and target language embedding space bidirectionally will bring significant improvement. We follow the previous iterative framework to conduct experiments. Results on standard benchmark demonstrate the effectiveness of our proposed method, which substantially outperforms previous unsupervised methods.
%R 10.18653/v1/2020.acl-main.274
%U https://aclanthology.org/2020.acl-main.274/
%U https://doi.org/10.18653/v1/2020.acl-main.274
%P 3036-3041
Markdown (Informal)
[A Relaxed Matching Procedure for Unsupervised BLI](https://aclanthology.org/2020.acl-main.274/) (Zhao et al., ACL 2020)
ACL
- Xu Zhao, Zihao Wang, Yong Zhang, and Hao Wu. 2020. A Relaxed Matching Procedure for Unsupervised BLI. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3036–3041, Online. Association for Computational Linguistics.