@inproceedings{tulkens-van-cranenburgh-2020-embarrassingly,
title = "Embarrassingly Simple Unsupervised Aspect Extraction",
author = "Tulkens, St{\'e}phan and
van Cranenburgh, Andreas",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.290/",
doi = "10.18653/v1/2020.acl-main.290",
pages = "3182--3187",
abstract = "We present a simple but effective method for aspect identification in sentiment analysis. Our unsupervised method only requires word embeddings and a POS tagger, and is therefore straightforward to apply to new domains and languages. We introduce Contrastive Attention (CAt), a novel single-head attention mechanism based on an RBF kernel, which gives a considerable boost in performance and makes the model interpretable. Previous work relied on syntactic features and complex neural models. We show that given the simplicity of current benchmark datasets for aspect extraction, such complex models are not needed. The code to reproduce the experiments reported in this paper is available at \url{https://github.com/clips/cat}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tulkens-van-cranenburgh-2020-embarrassingly">
<titleInfo>
<title>Embarrassingly Simple Unsupervised Aspect Extraction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Stéphan</namePart>
<namePart type="family">Tulkens</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">van Cranenburgh</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a simple but effective method for aspect identification in sentiment analysis. Our unsupervised method only requires word embeddings and a POS tagger, and is therefore straightforward to apply to new domains and languages. We introduce Contrastive Attention (CAt), a novel single-head attention mechanism based on an RBF kernel, which gives a considerable boost in performance and makes the model interpretable. Previous work relied on syntactic features and complex neural models. We show that given the simplicity of current benchmark datasets for aspect extraction, such complex models are not needed. The code to reproduce the experiments reported in this paper is available at https://github.com/clips/cat.</abstract>
<identifier type="citekey">tulkens-van-cranenburgh-2020-embarrassingly</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.290</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.290/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>3182</start>
<end>3187</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Embarrassingly Simple Unsupervised Aspect Extraction
%A Tulkens, Stéphan
%A van Cranenburgh, Andreas
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F tulkens-van-cranenburgh-2020-embarrassingly
%X We present a simple but effective method for aspect identification in sentiment analysis. Our unsupervised method only requires word embeddings and a POS tagger, and is therefore straightforward to apply to new domains and languages. We introduce Contrastive Attention (CAt), a novel single-head attention mechanism based on an RBF kernel, which gives a considerable boost in performance and makes the model interpretable. Previous work relied on syntactic features and complex neural models. We show that given the simplicity of current benchmark datasets for aspect extraction, such complex models are not needed. The code to reproduce the experiments reported in this paper is available at https://github.com/clips/cat.
%R 10.18653/v1/2020.acl-main.290
%U https://aclanthology.org/2020.acl-main.290/
%U https://doi.org/10.18653/v1/2020.acl-main.290
%P 3182-3187
Markdown (Informal)
[Embarrassingly Simple Unsupervised Aspect Extraction](https://aclanthology.org/2020.acl-main.290/) (Tulkens & van Cranenburgh, ACL 2020)
ACL
- Stéphan Tulkens and Andreas van Cranenburgh. 2020. Embarrassingly Simple Unsupervised Aspect Extraction. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3182–3187, Online. Association for Computational Linguistics.