@inproceedings{giulianelli-etal-2020-analysing,
title = "Analysing Lexical Semantic Change with Contextualised Word Representations",
author = "Giulianelli, Mario and
Del Tredici, Marco and
Fern{\'a}ndez, Raquel",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.365",
doi = "10.18653/v1/2020.acl-main.365",
pages = "3960--3973",
abstract = "This paper presents the first unsupervised approach to lexical semantic change that makes use of contextualised word representations. We propose a novel method that exploits the BERT neural language model to obtain representations of word usages, clusters these representations into usage types, and measures change along time with three proposed metrics. We create a new evaluation dataset and show that the model representations and the detected semantic shifts are positively correlated with human judgements. Our extensive qualitative analysis demonstrates that our method captures a variety of synchronic and diachronic linguistic phenomena. We expect our work to inspire further research in this direction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="giulianelli-etal-2020-analysing">
<titleInfo>
<title>Analysing Lexical Semantic Change with Contextualised Word Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mario</namePart>
<namePart type="family">Giulianelli</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Del Tredici</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Raquel</namePart>
<namePart type="family">Fernández</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the first unsupervised approach to lexical semantic change that makes use of contextualised word representations. We propose a novel method that exploits the BERT neural language model to obtain representations of word usages, clusters these representations into usage types, and measures change along time with three proposed metrics. We create a new evaluation dataset and show that the model representations and the detected semantic shifts are positively correlated with human judgements. Our extensive qualitative analysis demonstrates that our method captures a variety of synchronic and diachronic linguistic phenomena. We expect our work to inspire further research in this direction.</abstract>
<identifier type="citekey">giulianelli-etal-2020-analysing</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.365</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.365</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>3960</start>
<end>3973</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Analysing Lexical Semantic Change with Contextualised Word Representations
%A Giulianelli, Mario
%A Del Tredici, Marco
%A Fernández, Raquel
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F giulianelli-etal-2020-analysing
%X This paper presents the first unsupervised approach to lexical semantic change that makes use of contextualised word representations. We propose a novel method that exploits the BERT neural language model to obtain representations of word usages, clusters these representations into usage types, and measures change along time with three proposed metrics. We create a new evaluation dataset and show that the model representations and the detected semantic shifts are positively correlated with human judgements. Our extensive qualitative analysis demonstrates that our method captures a variety of synchronic and diachronic linguistic phenomena. We expect our work to inspire further research in this direction.
%R 10.18653/v1/2020.acl-main.365
%U https://aclanthology.org/2020.acl-main.365
%U https://doi.org/10.18653/v1/2020.acl-main.365
%P 3960-3973
Markdown (Informal)
[Analysing Lexical Semantic Change with Contextualised Word Representations](https://aclanthology.org/2020.acl-main.365) (Giulianelli et al., ACL 2020)
ACL