@inproceedings{stasaski-etal-2020-diverse,
title = "More Diverse Dialogue Datasets via Diversity-Informed Data Collection",
author = "Stasaski, Katherine and
Yang, Grace Hui and
Hearst, Marti A.",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.446/",
doi = "10.18653/v1/2020.acl-main.446",
pages = "4958--4968",
abstract = "Automated generation of conversational dialogue using modern neural architectures has made notable advances. However, these models are known to have a drawback of often producing uninteresting, predictable responses; this is known as the diversity problem. We introduce a new strategy to address this problem, called Diversity-Informed Data Collection. Unlike prior approaches, which modify model architectures to solve the problem, this method uses dynamically computed corpus-level statistics to determine which conversational participants to collect data from. Diversity-Informed Data Collection produces significantly more diverse data than baseline data collection methods, and better results on two downstream tasks: emotion classification and dialogue generation. This method is generalizable and can be used with other corpus-level metrics."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="stasaski-etal-2020-diverse">
<titleInfo>
<title>More Diverse Dialogue Datasets via Diversity-Informed Data Collection</title>
</titleInfo>
<name type="personal">
<namePart type="given">Katherine</namePart>
<namePart type="family">Stasaski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grace</namePart>
<namePart type="given">Hui</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marti</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Hearst</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automated generation of conversational dialogue using modern neural architectures has made notable advances. However, these models are known to have a drawback of often producing uninteresting, predictable responses; this is known as the diversity problem. We introduce a new strategy to address this problem, called Diversity-Informed Data Collection. Unlike prior approaches, which modify model architectures to solve the problem, this method uses dynamically computed corpus-level statistics to determine which conversational participants to collect data from. Diversity-Informed Data Collection produces significantly more diverse data than baseline data collection methods, and better results on two downstream tasks: emotion classification and dialogue generation. This method is generalizable and can be used with other corpus-level metrics.</abstract>
<identifier type="citekey">stasaski-etal-2020-diverse</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.446</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.446/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>4958</start>
<end>4968</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T More Diverse Dialogue Datasets via Diversity-Informed Data Collection
%A Stasaski, Katherine
%A Yang, Grace Hui
%A Hearst, Marti A.
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F stasaski-etal-2020-diverse
%X Automated generation of conversational dialogue using modern neural architectures has made notable advances. However, these models are known to have a drawback of often producing uninteresting, predictable responses; this is known as the diversity problem. We introduce a new strategy to address this problem, called Diversity-Informed Data Collection. Unlike prior approaches, which modify model architectures to solve the problem, this method uses dynamically computed corpus-level statistics to determine which conversational participants to collect data from. Diversity-Informed Data Collection produces significantly more diverse data than baseline data collection methods, and better results on two downstream tasks: emotion classification and dialogue generation. This method is generalizable and can be used with other corpus-level metrics.
%R 10.18653/v1/2020.acl-main.446
%U https://aclanthology.org/2020.acl-main.446/
%U https://doi.org/10.18653/v1/2020.acl-main.446
%P 4958-4968
Markdown (Informal)
[More Diverse Dialogue Datasets via Diversity-Informed Data Collection](https://aclanthology.org/2020.acl-main.446/) (Stasaski et al., ACL 2020)
ACL