@inproceedings{jin-etal-2020-hooks,
title = "Hooks in the Headline: Learning to Generate Headlines with Controlled Styles",
author = "Jin, Di and
Jin, Zhijing and
Zhou, Joey Tianyi and
Orii, Lisa and
Szolovits, Peter",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.456/",
doi = "10.18653/v1/2020.acl-main.456",
pages = "5082--5093",
abstract = "Current summarization systems only produce plain, factual headlines, far from the practical needs for the exposure and memorableness of the articles. We propose a new task, Stylistic Headline Generation (SHG), to enrich the headlines with three style options (humor, romance and clickbait), thus attracting more readers. With no style-specific article-headline pair (only a standard headline summarization dataset and mono-style corpora), our method TitleStylist generates stylistic headlines by combining the summarization and reconstruction tasks into a multitasking framework. We also introduced a novel parameter sharing scheme to further disentangle the style from text. Through both automatic and human evaluation, we demonstrate that TitleStylist can generate relevant, fluent headlines with three target styles: humor, romance, and clickbait. The attraction score of our model generated headlines outperforms the state-of-the-art summarization model by 9.68{\%}, even outperforming human-written references."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jin-etal-2020-hooks">
<titleInfo>
<title>Hooks in the Headline: Learning to Generate Headlines with Controlled Styles</title>
</titleInfo>
<name type="personal">
<namePart type="given">Di</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhijing</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joey</namePart>
<namePart type="given">Tianyi</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="family">Orii</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Peter</namePart>
<namePart type="family">Szolovits</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Current summarization systems only produce plain, factual headlines, far from the practical needs for the exposure and memorableness of the articles. We propose a new task, Stylistic Headline Generation (SHG), to enrich the headlines with three style options (humor, romance and clickbait), thus attracting more readers. With no style-specific article-headline pair (only a standard headline summarization dataset and mono-style corpora), our method TitleStylist generates stylistic headlines by combining the summarization and reconstruction tasks into a multitasking framework. We also introduced a novel parameter sharing scheme to further disentangle the style from text. Through both automatic and human evaluation, we demonstrate that TitleStylist can generate relevant, fluent headlines with three target styles: humor, romance, and clickbait. The attraction score of our model generated headlines outperforms the state-of-the-art summarization model by 9.68%, even outperforming human-written references.</abstract>
<identifier type="citekey">jin-etal-2020-hooks</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.456</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.456/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>5082</start>
<end>5093</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hooks in the Headline: Learning to Generate Headlines with Controlled Styles
%A Jin, Di
%A Jin, Zhijing
%A Zhou, Joey Tianyi
%A Orii, Lisa
%A Szolovits, Peter
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F jin-etal-2020-hooks
%X Current summarization systems only produce plain, factual headlines, far from the practical needs for the exposure and memorableness of the articles. We propose a new task, Stylistic Headline Generation (SHG), to enrich the headlines with three style options (humor, romance and clickbait), thus attracting more readers. With no style-specific article-headline pair (only a standard headline summarization dataset and mono-style corpora), our method TitleStylist generates stylistic headlines by combining the summarization and reconstruction tasks into a multitasking framework. We also introduced a novel parameter sharing scheme to further disentangle the style from text. Through both automatic and human evaluation, we demonstrate that TitleStylist can generate relevant, fluent headlines with three target styles: humor, romance, and clickbait. The attraction score of our model generated headlines outperforms the state-of-the-art summarization model by 9.68%, even outperforming human-written references.
%R 10.18653/v1/2020.acl-main.456
%U https://aclanthology.org/2020.acl-main.456/
%U https://doi.org/10.18653/v1/2020.acl-main.456
%P 5082-5093
Markdown (Informal)
[Hooks in the Headline: Learning to Generate Headlines with Controlled Styles](https://aclanthology.org/2020.acl-main.456/) (Jin et al., ACL 2020)
ACL