@inproceedings{tian-etal-2020-improving-chinese,
title = "Improving {C}hinese Word Segmentation with Wordhood Memory Networks",
author = "Tian, Yuanhe and
Song, Yan and
Xia, Fei and
Zhang, Tong and
Wang, Yonggang",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.734/",
doi = "10.18653/v1/2020.acl-main.734",
pages = "8274--8285",
abstract = "Contextual features always play an important role in Chinese word segmentation (CWS). Wordhood information, being one of the contextual features, is proved to be useful in many conventional character-based segmenters. However, this feature receives less attention in recent neural models and it is also challenging to design a framework that can properly integrate wordhood information from different wordhood measures to existing neural frameworks. In this paper, we therefore propose a neural framework, WMSeg, which uses memory networks to incorporate wordhood information with several popular encoder-decoder combinations for CWS. Experimental results on five benchmark datasets indicate the memory mechanism successfully models wordhood information for neural segmenters and helps WMSeg achieve state-of-the-art performance on all those datasets. Further experiments and analyses also demonstrate the robustness of our proposed framework with respect to different wordhood measures and the efficiency of wordhood information in cross-domain experiments."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tian-etal-2020-improving-chinese">
<titleInfo>
<title>Improving Chinese Word Segmentation with Wordhood Memory Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuanhe</namePart>
<namePart type="family">Tian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yan</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fei</namePart>
<namePart type="family">Xia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tong</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonggang</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Contextual features always play an important role in Chinese word segmentation (CWS). Wordhood information, being one of the contextual features, is proved to be useful in many conventional character-based segmenters. However, this feature receives less attention in recent neural models and it is also challenging to design a framework that can properly integrate wordhood information from different wordhood measures to existing neural frameworks. In this paper, we therefore propose a neural framework, WMSeg, which uses memory networks to incorporate wordhood information with several popular encoder-decoder combinations for CWS. Experimental results on five benchmark datasets indicate the memory mechanism successfully models wordhood information for neural segmenters and helps WMSeg achieve state-of-the-art performance on all those datasets. Further experiments and analyses also demonstrate the robustness of our proposed framework with respect to different wordhood measures and the efficiency of wordhood information in cross-domain experiments.</abstract>
<identifier type="citekey">tian-etal-2020-improving-chinese</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.734</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.734/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>8274</start>
<end>8285</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Improving Chinese Word Segmentation with Wordhood Memory Networks
%A Tian, Yuanhe
%A Song, Yan
%A Xia, Fei
%A Zhang, Tong
%A Wang, Yonggang
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F tian-etal-2020-improving-chinese
%X Contextual features always play an important role in Chinese word segmentation (CWS). Wordhood information, being one of the contextual features, is proved to be useful in many conventional character-based segmenters. However, this feature receives less attention in recent neural models and it is also challenging to design a framework that can properly integrate wordhood information from different wordhood measures to existing neural frameworks. In this paper, we therefore propose a neural framework, WMSeg, which uses memory networks to incorporate wordhood information with several popular encoder-decoder combinations for CWS. Experimental results on five benchmark datasets indicate the memory mechanism successfully models wordhood information for neural segmenters and helps WMSeg achieve state-of-the-art performance on all those datasets. Further experiments and analyses also demonstrate the robustness of our proposed framework with respect to different wordhood measures and the efficiency of wordhood information in cross-domain experiments.
%R 10.18653/v1/2020.acl-main.734
%U https://aclanthology.org/2020.acl-main.734/
%U https://doi.org/10.18653/v1/2020.acl-main.734
%P 8274-8285
Markdown (Informal)
[Improving Chinese Word Segmentation with Wordhood Memory Networks](https://aclanthology.org/2020.acl-main.734/) (Tian et al., ACL 2020)
ACL