@inproceedings{mccarthy-etal-2020-addressing,
title = "Addressing Posterior Collapse with Mutual Information for Improved Variational Neural Machine Translation",
author = "McCarthy, Arya D. and
Li, Xian and
Gu, Jiatao and
Dong, Ning",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.753/",
doi = "10.18653/v1/2020.acl-main.753",
pages = "8512--8525",
abstract = "This paper proposes a simple and effective approach to address the problem of posterior collapse in conditional variational autoencoders (CVAEs). It thus improves performance of machine translation models that use noisy or monolingual data, as well as in conventional settings. Extending Transformer and conditional VAEs, our proposed latent variable model measurably prevents posterior collapse by (1) using a modified evidence lower bound (ELBO) objective which promotes mutual information between the latent variable and the target, and (2) guiding the latent variable with an auxiliary bag-of-words prediction task. As a result, the proposed model yields improved translation quality compared to existing variational NMT models on WMT Ro{\ensuremath{\leftrightarrow}}En and De{\ensuremath{\leftrightarrow}}En. With latent variables being effectively utilized, our model demonstrates improved robustness over non-latent Transformer in handling uncertainty: exploiting noisy source-side monolingual data (up to +3.2 BLEU), and training with weakly aligned web-mined parallel data (up to +4.7 BLEU)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mccarthy-etal-2020-addressing">
<titleInfo>
<title>Addressing Posterior Collapse with Mutual Information for Improved Variational Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Arya</namePart>
<namePart type="given">D</namePart>
<namePart type="family">McCarthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiatao</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ning</namePart>
<namePart type="family">Dong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper proposes a simple and effective approach to address the problem of posterior collapse in conditional variational autoencoders (CVAEs). It thus improves performance of machine translation models that use noisy or monolingual data, as well as in conventional settings. Extending Transformer and conditional VAEs, our proposed latent variable model measurably prevents posterior collapse by (1) using a modified evidence lower bound (ELBO) objective which promotes mutual information between the latent variable and the target, and (2) guiding the latent variable with an auxiliary bag-of-words prediction task. As a result, the proposed model yields improved translation quality compared to existing variational NMT models on WMT Ro\ensuremathłeftrightarrowEn and De\ensuremathłeftrightarrowEn. With latent variables being effectively utilized, our model demonstrates improved robustness over non-latent Transformer in handling uncertainty: exploiting noisy source-side monolingual data (up to +3.2 BLEU), and training with weakly aligned web-mined parallel data (up to +4.7 BLEU).</abstract>
<identifier type="citekey">mccarthy-etal-2020-addressing</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.753</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.753/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>8512</start>
<end>8525</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Addressing Posterior Collapse with Mutual Information for Improved Variational Neural Machine Translation
%A McCarthy, Arya D.
%A Li, Xian
%A Gu, Jiatao
%A Dong, Ning
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F mccarthy-etal-2020-addressing
%X This paper proposes a simple and effective approach to address the problem of posterior collapse in conditional variational autoencoders (CVAEs). It thus improves performance of machine translation models that use noisy or monolingual data, as well as in conventional settings. Extending Transformer and conditional VAEs, our proposed latent variable model measurably prevents posterior collapse by (1) using a modified evidence lower bound (ELBO) objective which promotes mutual information between the latent variable and the target, and (2) guiding the latent variable with an auxiliary bag-of-words prediction task. As a result, the proposed model yields improved translation quality compared to existing variational NMT models on WMT Ro\ensuremathłeftrightarrowEn and De\ensuremathłeftrightarrowEn. With latent variables being effectively utilized, our model demonstrates improved robustness over non-latent Transformer in handling uncertainty: exploiting noisy source-side monolingual data (up to +3.2 BLEU), and training with weakly aligned web-mined parallel data (up to +4.7 BLEU).
%R 10.18653/v1/2020.acl-main.753
%U https://aclanthology.org/2020.acl-main.753/
%U https://doi.org/10.18653/v1/2020.acl-main.753
%P 8512-8525
Markdown (Informal)
[Addressing Posterior Collapse with Mutual Information for Improved Variational Neural Machine Translation](https://aclanthology.org/2020.acl-main.753/) (McCarthy et al., ACL 2020)
ACL