@inproceedings{chen-etal-2020-lian,
title = "联合依存分析的汉语语义组合模型({C}hinese Semantic Composition Model with Dependency Parsing)",
author = "Chen, Yuanmeng and
Zhang, Yujie and
Xu, Jinan and
Chen, Yufeng",
editor = "Sun, Maosong and
Li, Sujian and
Zhang, Yue and
Liu, Yang",
booktitle = "Proceedings of the 19th Chinese National Conference on Computational Linguistics",
month = oct,
year = "2020",
address = "Haikou, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2020.ccl-1.21/",
pages = "215--224",
language = "zho",
abstract = "在语义组合方法中,结构化方法强调以结构信息指导词义表示的组合方式。现有结构化语义组合方法使用外部分析器获取句法结构信息,导致句法分析与语义组合相互割裂,句法分析的精度严重制约语义组合模型的性能,且训练数据领域不一致等问题会进一步加剧性能的下降。对此,本文提出联合依存分析的语义组合模型,将依存分析与语义组合进行联合,一方面在训练语义组合模型时对依存分析模型进行微调,使其能够更适应语义组合模型使用的训练数据的领域特点;另一方面,在语义组合部分加入依存分析的中间信息表示,获取更丰富的结构信息和语义信息,以此来降低语义组合模型对依存分析错误结果的敏感度,提升模型的鲁棒性。我们以汉语为具体研究对象,将语义组合模型用于复述识别任务,并在CTB5汉语依存分析数据和LCQMC汉语复述识别数据上验证本文提出的模型。实验结果显示,本文所提方法在复述识别任务上的预测正确率和F1值上分别达到76.81{\%}和78.03{\%};我们进一步设计实验对联合学习和中间信息利用的有效性进行验证,并与相关代表性工作进行了对比分析。"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2020-lian">
<titleInfo>
<title>联合依存分析的汉语语义组合模型(Chinese Semantic Composition Model with Dependency Parsing)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuanmeng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yujie</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jinan</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yufeng</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Haikou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>在语义组合方法中,结构化方法强调以结构信息指导词义表示的组合方式。现有结构化语义组合方法使用外部分析器获取句法结构信息,导致句法分析与语义组合相互割裂,句法分析的精度严重制约语义组合模型的性能,且训练数据领域不一致等问题会进一步加剧性能的下降。对此,本文提出联合依存分析的语义组合模型,将依存分析与语义组合进行联合,一方面在训练语义组合模型时对依存分析模型进行微调,使其能够更适应语义组合模型使用的训练数据的领域特点;另一方面,在语义组合部分加入依存分析的中间信息表示,获取更丰富的结构信息和语义信息,以此来降低语义组合模型对依存分析错误结果的敏感度,提升模型的鲁棒性。我们以汉语为具体研究对象,将语义组合模型用于复述识别任务,并在CTB5汉语依存分析数据和LCQMC汉语复述识别数据上验证本文提出的模型。实验结果显示,本文所提方法在复述识别任务上的预测正确率和F1值上分别达到76.81%和78.03%;我们进一步设计实验对联合学习和中间信息利用的有效性进行验证,并与相关代表性工作进行了对比分析。</abstract>
<identifier type="citekey">chen-etal-2020-lian</identifier>
<location>
<url>https://aclanthology.org/2020.ccl-1.21/</url>
</location>
<part>
<date>2020-10</date>
<extent unit="page">
<start>215</start>
<end>224</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 联合依存分析的汉语语义组合模型(Chinese Semantic Composition Model with Dependency Parsing)
%A Chen, Yuanmeng
%A Zhang, Yujie
%A Xu, Jinan
%A Chen, Yufeng
%Y Sun, Maosong
%Y Li, Sujian
%Y Zhang, Yue
%Y Liu, Yang
%S Proceedings of the 19th Chinese National Conference on Computational Linguistics
%D 2020
%8 October
%I Chinese Information Processing Society of China
%C Haikou, China
%G zho
%F chen-etal-2020-lian
%X 在语义组合方法中,结构化方法强调以结构信息指导词义表示的组合方式。现有结构化语义组合方法使用外部分析器获取句法结构信息,导致句法分析与语义组合相互割裂,句法分析的精度严重制约语义组合模型的性能,且训练数据领域不一致等问题会进一步加剧性能的下降。对此,本文提出联合依存分析的语义组合模型,将依存分析与语义组合进行联合,一方面在训练语义组合模型时对依存分析模型进行微调,使其能够更适应语义组合模型使用的训练数据的领域特点;另一方面,在语义组合部分加入依存分析的中间信息表示,获取更丰富的结构信息和语义信息,以此来降低语义组合模型对依存分析错误结果的敏感度,提升模型的鲁棒性。我们以汉语为具体研究对象,将语义组合模型用于复述识别任务,并在CTB5汉语依存分析数据和LCQMC汉语复述识别数据上验证本文提出的模型。实验结果显示,本文所提方法在复述识别任务上的预测正确率和F1值上分别达到76.81%和78.03%;我们进一步设计实验对联合学习和中间信息利用的有效性进行验证,并与相关代表性工作进行了对比分析。
%U https://aclanthology.org/2020.ccl-1.21/
%P 215-224
Markdown (Informal)
[联合依存分析的汉语语义组合模型(Chinese Semantic Composition Model with Dependency Parsing)](https://aclanthology.org/2020.ccl-1.21/) (Chen et al., CCL 2020)
ACL