@inproceedings{fan-etal-2020-ji,
title = "基于{BERT}与柱搜索的中文释义生成({C}hinese Definition Modeling Based on {BERT} and Beam Seach)",
author = "Fan, Qinan and
Kong, Cunliang and
Yang, Liner and
Yang, Erhong",
editor = "Sun, Maosong and
Li, Sujian and
Zhang, Yue and
Liu, Yang",
booktitle = "Proceedings of the 19th Chinese National Conference on Computational Linguistics",
month = oct,
year = "2020",
address = "Haikou, China",
publisher = "Chinese Information Processing Society of China",
url = "https://aclanthology.org/2020.ccl-1.32/",
pages = "336--348",
language = "zho",
abstract = "释义生成任务是指为一个目标词生成相应的释义。前人研究中文释义生成任务时未考虑目标词的上下文,本文首次在中文释义生成任务中使用了目标词的上下文信息,并提出了一个基于BERT与柱搜索的释义生成模型。本文构建了包含上下文的CWN中文数据集用于开展实验,除了BLEU指标之外,还使用语义相似度作为额外的自动评价指标,实验结果显示本文模型在中文CWN数据集和英文Oxford数据集上均有显著提升,人工评价结果也与自动评价结果一致。最后,本文对生成实例进行了深入分析。"
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fan-etal-2020-ji">
<titleInfo>
<title>基于BERT与柱搜索的中文释义生成(Chinese Definition Modeling Based on BERT and Beam Seach)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Qinan</namePart>
<namePart type="family">Fan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cunliang</namePart>
<namePart type="family">Kong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liner</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Erhong</namePart>
<namePart type="family">Yang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">zho</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Chinese National Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maosong</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sujian</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Chinese Information Processing Society of China</publisher>
<place>
<placeTerm type="text">Haikou, China</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>释义生成任务是指为一个目标词生成相应的释义。前人研究中文释义生成任务时未考虑目标词的上下文,本文首次在中文释义生成任务中使用了目标词的上下文信息,并提出了一个基于BERT与柱搜索的释义生成模型。本文构建了包含上下文的CWN中文数据集用于开展实验,除了BLEU指标之外,还使用语义相似度作为额外的自动评价指标,实验结果显示本文模型在中文CWN数据集和英文Oxford数据集上均有显著提升,人工评价结果也与自动评价结果一致。最后,本文对生成实例进行了深入分析。</abstract>
<identifier type="citekey">fan-etal-2020-ji</identifier>
<location>
<url>https://aclanthology.org/2020.ccl-1.32/</url>
</location>
<part>
<date>2020-10</date>
<extent unit="page">
<start>336</start>
<end>348</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T 基于BERT与柱搜索的中文释义生成(Chinese Definition Modeling Based on BERT and Beam Seach)
%A Fan, Qinan
%A Kong, Cunliang
%A Yang, Liner
%A Yang, Erhong
%Y Sun, Maosong
%Y Li, Sujian
%Y Zhang, Yue
%Y Liu, Yang
%S Proceedings of the 19th Chinese National Conference on Computational Linguistics
%D 2020
%8 October
%I Chinese Information Processing Society of China
%C Haikou, China
%G zho
%F fan-etal-2020-ji
%X 释义生成任务是指为一个目标词生成相应的释义。前人研究中文释义生成任务时未考虑目标词的上下文,本文首次在中文释义生成任务中使用了目标词的上下文信息,并提出了一个基于BERT与柱搜索的释义生成模型。本文构建了包含上下文的CWN中文数据集用于开展实验,除了BLEU指标之外,还使用语义相似度作为额外的自动评价指标,实验结果显示本文模型在中文CWN数据集和英文Oxford数据集上均有显著提升,人工评价结果也与自动评价结果一致。最后,本文对生成实例进行了深入分析。
%U https://aclanthology.org/2020.ccl-1.32/
%P 336-348
Markdown (Informal)
[基于BERT与柱搜索的中文释义生成(Chinese Definition Modeling Based on BERT and Beam Seach)](https://aclanthology.org/2020.ccl-1.32/) (Fan et al., CCL 2020)
ACL