@inproceedings{hao-etal-2020-probabilistic,
title = "Probabilistic Predictions of People Perusing: Evaluating Metrics of Language Model Performance for Psycholinguistic Modeling",
author = "Hao, Yiding and
Mendelsohn, Simon and
Sterneck, Rachel and
Martinez, Randi and
Frank, Robert",
editor = "Chersoni, Emmanuele and
Jacobs, Cassandra and
Oseki, Yohei and
Pr{\'e}vot, Laurent and
Santus, Enrico",
booktitle = "Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.cmcl-1.10",
doi = "10.18653/v1/2020.cmcl-1.10",
pages = "75--86",
abstract = "By positing a relationship between naturalistic reading times and information-theoretic surprisal, surprisal theory (Hale, 2001; Levy, 2008) provides a natural interface between language models and psycholinguistic models. This paper re-evaluates a claim due to Goodkind and Bicknell (2018) that a language model{'}s ability to model reading times is a linear function of its perplexity. By extending Goodkind and Bicknell{'}s analysis to modern neural architectures, we show that the proposed relation does not always hold for Long Short-Term Memory networks, Transformers, and pre-trained models. We introduce an alternate measure of language modeling performance called predictability norm correlation based on Cloze probabilities measured from human subjects. Our new metric yields a more robust relationship between language model quality and psycholinguistic modeling performance that allows for comparison between models with different training configurations.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hao-etal-2020-probabilistic">
<titleInfo>
<title>Probabilistic Predictions of People Perusing: Evaluating Metrics of Language Model Performance for Psycholinguistic Modeling</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yiding</namePart>
<namePart type="family">Hao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mendelsohn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rachel</namePart>
<namePart type="family">Sterneck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Randi</namePart>
<namePart type="family">Martinez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Robert</namePart>
<namePart type="family">Frank</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Emmanuele</namePart>
<namePart type="family">Chersoni</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cassandra</namePart>
<namePart type="family">Jacobs</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yohei</namePart>
<namePart type="family">Oseki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Prévot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Enrico</namePart>
<namePart type="family">Santus</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>By positing a relationship between naturalistic reading times and information-theoretic surprisal, surprisal theory (Hale, 2001; Levy, 2008) provides a natural interface between language models and psycholinguistic models. This paper re-evaluates a claim due to Goodkind and Bicknell (2018) that a language model’s ability to model reading times is a linear function of its perplexity. By extending Goodkind and Bicknell’s analysis to modern neural architectures, we show that the proposed relation does not always hold for Long Short-Term Memory networks, Transformers, and pre-trained models. We introduce an alternate measure of language modeling performance called predictability norm correlation based on Cloze probabilities measured from human subjects. Our new metric yields a more robust relationship between language model quality and psycholinguistic modeling performance that allows for comparison between models with different training configurations.</abstract>
<identifier type="citekey">hao-etal-2020-probabilistic</identifier>
<identifier type="doi">10.18653/v1/2020.cmcl-1.10</identifier>
<location>
<url>https://aclanthology.org/2020.cmcl-1.10</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>75</start>
<end>86</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Probabilistic Predictions of People Perusing: Evaluating Metrics of Language Model Performance for Psycholinguistic Modeling
%A Hao, Yiding
%A Mendelsohn, Simon
%A Sterneck, Rachel
%A Martinez, Randi
%A Frank, Robert
%Y Chersoni, Emmanuele
%Y Jacobs, Cassandra
%Y Oseki, Yohei
%Y Prévot, Laurent
%Y Santus, Enrico
%S Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F hao-etal-2020-probabilistic
%X By positing a relationship between naturalistic reading times and information-theoretic surprisal, surprisal theory (Hale, 2001; Levy, 2008) provides a natural interface between language models and psycholinguistic models. This paper re-evaluates a claim due to Goodkind and Bicknell (2018) that a language model’s ability to model reading times is a linear function of its perplexity. By extending Goodkind and Bicknell’s analysis to modern neural architectures, we show that the proposed relation does not always hold for Long Short-Term Memory networks, Transformers, and pre-trained models. We introduce an alternate measure of language modeling performance called predictability norm correlation based on Cloze probabilities measured from human subjects. Our new metric yields a more robust relationship between language model quality and psycholinguistic modeling performance that allows for comparison between models with different training configurations.
%R 10.18653/v1/2020.cmcl-1.10
%U https://aclanthology.org/2020.cmcl-1.10
%U https://doi.org/10.18653/v1/2020.cmcl-1.10
%P 75-86
Markdown (Informal)
[Probabilistic Predictions of People Perusing: Evaluating Metrics of Language Model Performance for Psycholinguistic Modeling](https://aclanthology.org/2020.cmcl-1.10) (Hao et al., CMCL 2020)
ACL